Centrum Wiskunde & Informatica

(DuSoft

The Density Matrix Formalism, Quantum Channels, And More

CROSSING Winter School on Quantum Crypto

Serge Fehr

CWIAmsterdam www.cwi.nl/~fehr

Dirac's Bra-Ket Notation

Section 3 Section 2 Sectio

- Elements in \mathscr{H} are denoted $|\varphi\rangle$, and called *ket-vectors*.
- Solution in the important of $|\varphi\rangle, |\psi\rangle \in \mathscr{H}$ is denoted $\langle \varphi | \psi \rangle$.

Example: $\mathscr{H} = \mathbb{C}^2$ with

$$|0
angle = \begin{pmatrix} 1\\ 0 \end{pmatrix}$$
 and $|1
angle = \begin{pmatrix} 0\\ 1 \end{pmatrix}$

where

 $\langle 0|0
angle = 1 = \langle 1|1
angle$ and $\langle 0|1
angle = 0$

Dirac's Bra-Ket Notation

Section 3 Section 2 Sectio

- Elements in \mathscr{H} are denoted $|\varphi\rangle$, and called *ket-vectors*.
- Solution Inner product of $|\varphi\rangle, |\psi\rangle \in \mathscr{H}$ is denoted $\langle \varphi | \psi \rangle$.
- For $|\varphi\rangle \in \mathcal{H}$, the *bra-vector* $\langle \varphi |$ is functional $\mathcal{H} \to \mathbb{C}$ s.t. $\langle \varphi | |\psi \rangle = \langle \varphi | \psi \rangle \quad \forall |\psi \rangle \in \mathcal{H}$
- Solve For $|\varphi\rangle, |\psi\rangle \in \mathscr{H}$, the outer product $|\psi\rangle\langle\varphi| \in \operatorname{Lin}(\mathscr{H})$ is s.t. $|\psi\rangle\langle\varphi||\xi\rangle = |\psi\rangle\langle\varphi|\xi\rangle \quad \forall |\xi\rangle \in \mathscr{H}$

Solution The trace is (unique) linear functional tr: $\operatorname{Lin}(\mathscr{H}) \to \mathbb{C}$ s.t. $\operatorname{tr}(|\psi\rangle\langle\varphi|) = \langle\varphi|\psi\rangle \quad \forall |\varphi\rangle, |\psi\rangle \in \mathscr{H}$

Dirac's Bra-Ket Notation

Section of the sectio

Elements in \mathscr{H} are denoted $|\varphi\rangle$, and called *ket-vectors*.

Fact. tr is *cyclic*: $tr(LR) = tr(RL) \forall L, R \in Lin(\mathscr{H})$. **Proof.** For $R = |\psi\rangle\langle\varphi|$: $tr(L|\psi\rangle\langle\varphi|) = \langle\varphi|L|\psi\rangle = \langle\varphi|L|\psi\rangle = tr(|\psi\rangle\langle\varphi|L)$ For general *R*: by linearity.

 $|\psi/\langle \varphi||\varsigma/=|\psi/\langle \varphi|\varsigma/ \quad \forall |\varsigma/\in\mathcal{H}$

The *trace* is (unique) linear functional tr: $\operatorname{Lin}(\mathscr{H}) \to \mathbb{C}$ s.t. $\operatorname{tr}(|\psi\rangle\langle\varphi|) = \langle\varphi|\psi\rangle \quad \forall |\varphi\rangle, |\psi\rangle \in \mathscr{H}$

Reminder: The State-Vector Formalism

- ♀ Quantum system A: Hilbert space \mathscr{H} (or $\mathscr{H}_A \otimes \mathscr{H}_B$ etc.)
- State of A: norm-1 "state vector" $|\varphi\rangle \in \mathscr{H}$
- \mathcal{G} (Unitary) operation: $U \in \text{Uni}(\mathcal{H})$. Rule: U maps $|\varphi\rangle$ to $U|\varphi\rangle$

Measurement: {M_i}_{i∈I} s.t. ∑M_i[†]M_i=I. Rule:
 observe *i* with probability

 $p_i = \langle \varphi | M_i^{\dagger} M_i | \varphi \rangle$

Born's rule

▶ state collapses to post-measurement state $M_i |\varphi\rangle / \sqrt{p_i}$.

In case of rank-1 projective measurements, i.e., "measuring in a (orthonormal) basis $\{|i\rangle\}_{i\in I}$, $\{M_i\}_{i\in I}$ is given by $M_i = |i\rangle\langle i|$, and hence $p_i = \langle \varphi | M_i^{\dagger} M_i | \varphi \rangle = \langle \varphi | |i\rangle\langle i| |i\rangle\langle i| | \varphi \rangle = \langle \varphi | i\rangle\langle i| i\rangle\langle i| \varphi \rangle$ $= \langle \varphi | i\rangle\langle i| \varphi \rangle = |\langle i| \varphi \rangle|^2 = |\alpha_i|^2$

for
$$|arphi
angle = \sum_i lpha_i |i
angle$$
 .

Solution Measurement: $\{M_i\}_{i \in I}$ s.t. $\sum M_i^{\dagger} M_i = \mathbb{I}$. Rule:

 \triangleright observe *i* with probability

 $p_i = \langle \varphi | M_i^{\dagger} M_i | \varphi \rangle$

Born's rule

▶ state collapses to post-measurement state $M_i |\varphi\rangle / \sqrt{p_i}$.

(First) Goal: A New Formalism

Motivation 1: Randomized States

Say: Alice prepares system *A* in state $|\varphi\rangle$ with probability *p* and in state $|\psi\rangle$ with probability 1-p, and gives *A* to Bob.

Q: What's a proper description of the state of **A** to Bob?

A: The probability distribution over the state vectors: " $|\varphi\rangle$ with probability *p*, and $|\psi\rangle$ with probability 1-p"

Caveat: This representation is not unique!

Example

Consider:

"|0
angle with prob. 1/2, and |1
angle with prob. 1/2"

 $|+\rangle = \frac{1}{\sqrt{2}} |0\rangle + \frac{1}{\sqrt{2}} |1\rangle$

 $|-\rangle = \frac{1}{\sqrt{2}} |0\rangle - \frac{1}{\sqrt{2}} |1\rangle$

versus

" $|+\rangle$ with prob. 1/2, and $|-\rangle$ with prob. 1/2".

Then, measuring in computational basis $\{|0\rangle, |1\rangle\}$: *observe a random bit as outcome,* and the same for the Hadamard basis $\{|+\rangle, |-\rangle\}$.

Actually, **cannot** be distinguished by **any** measurement. As such, the two **states are identical**.

Motivation 2: Subsystems

Given: state $|\varphi_{AB}\rangle \in \mathscr{H}_A \otimes \mathscr{H}_B$ of a bipartite system AB.

Q: How to describe state of system **B** alone?

Examples:

- ▶ If $|\varphi_{AB}\rangle = |\varphi_{A}\rangle \otimes |\varphi_{B}\rangle$ then, quite obviously: $|\varphi_{B}\rangle$
- ▶ But if, say,

 $|\varphi_{AB}\rangle = \frac{1}{\sqrt{2}} (|0\rangle \otimes |0\rangle + |1\rangle \otimes |1\rangle)$ then it's not clear - and it's **not** $\frac{1}{\sqrt{2}} (|0\rangle + |1\rangle) = |+\rangle$!!! Consider: randomized state

" $|\varphi_k\rangle$ with probability ε_k ($k \in K$)"

Q: How does it behave under measurement $\{M_i\}_{i \in I}$?

A: Conditioned on the state being $|\varphi_k\rangle$, observe *i* with prob. $p_{i|k} = \langle \varphi_k | M_i^{\dagger} M_i | \varphi_k \rangle = \operatorname{tr}(M_i^{\dagger} M_i | \varphi_k \rangle \langle \varphi_k |),$ and thus, (on average) observe *i* with probability $p_{i} = \sum_{k} \varepsilon_{k} p_{i|k} = \sum_{k} \varepsilon_{k} \operatorname{tr}(M_{i}^{\dagger} M_{i} |\varphi_{k}\rangle \langle \varphi_{k}|)$ $= \operatorname{tr}(M_i^{\dagger} M_i(\sum_k \varepsilon_k |\varphi_k\rangle \langle \varphi_k |))$ **Thus:** The matrix $\rho = \sum \varepsilon_k |\varphi_k\rangle \langle \varphi_k|$ carries all the information, and can be used to describe the state.

Density Matrices

The matrix $\rho = \sum \varepsilon_k |\varphi_k\rangle \langle \varphi_k|$ satisfies:

1. Positivity: $\forall |\psi\rangle \in \mathscr{H}$ $\langle \psi | \rho | \psi \rangle = \sum \varepsilon_k \langle \psi | \varphi_k \rangle \langle \varphi_k | \psi \rangle = \sum \varepsilon_k |\langle \psi | \varphi_k \rangle|^2 \ge 0$ 2. Normalization:

 $\operatorname{tr}(\rho) = \sum \varepsilon_k \operatorname{tr}(|\varphi_k\rangle \langle \varphi_k|) = \sum \varepsilon_k \langle \varphi_k | \varphi_k \rangle = \sum \varepsilon_k = 1$

Definition: Such $\rho \in \text{Lin}(\mathscr{H})$ is called *density matrix*. Write $\text{Dens}(\mathscr{H}) := \{\rho \in \text{Lin}(\mathscr{H}) \mid \rho \ge 0, \operatorname{tr}(\rho) = 1\}$

Theorem: $\rho \in \text{Lin}(\mathscr{H})$ is a density matrix iff $\rho = \sum \varepsilon_k |\varphi_k\rangle \langle \varphi_k|$ for $|\varphi_k\rangle \in \mathscr{H}$ with $\langle \varphi_k | \varphi_k \rangle = 1$, and $\varepsilon_k \ge 0$ with $\sum \varepsilon_k = 1$.

Density Matrices

Terminology:

- Such a "randomized state" is called *mixed state*.
- ▶ A "deterministic state", given by $|\varphi\rangle \in \mathscr{H}$, is called **pure**. The corresponding density matrix is then

 $\rho = |\varphi\rangle\!\langle \varphi|$.

Definition: Such $\rho \in \text{Lin}(\mathscr{H})$ is called *density matrix*. Write $\text{Dens}(\mathscr{H}) := \{\rho \in \text{Lin}(\mathscr{H}) \mid \rho \ge 0, \operatorname{tr}(\rho) = 1\}$

Theorem: $\rho \in \text{Lin}(\mathscr{H})$ is a density matrix iff $\rho = \sum \varepsilon_k |\varphi_k\rangle \langle \varphi_k|$ for $|\varphi_k\rangle \in \mathscr{H}$ with $\langle \varphi_k | \varphi_k \rangle = 1$, and $\varepsilon_k \ge 0$ with $\sum \varepsilon_k = 1$.

The Density-Matrix Formalism

[♀] Quantum system A: Hilbert space \mathscr{H} (or $\mathscr{H}_A \otimes \mathscr{H}_B$ etc.)

𝔅 (Unitary) operation: U ∈ Uni(\mathscr{H}). Rule: maps ρ_A to $U\rho_A U^{\dagger}$

✓ Measurement: {M_i}_{i∈I} s.t. ∑M_i[†]M_i=I. Rule:
 ▷ observe *i* with probability
 $p_i = tr(M_i^{\dagger}M_i\rho_A) = tr(M_i\rho_A M_i^{\dagger})$ ▷ state collapses to $\rho_A^i = M_i\rho_A M_i^{\dagger}/p_i$.

Example

Consider:

" $|0\rangle$ with prob. 1/2, and $|1\rangle$ with prob. 1/2"

 $|+\rangle = \frac{1}{\sqrt{2}} |0\rangle + \frac{1}{\sqrt{2}} |1\rangle$

 $|-\rangle = \frac{1}{\sqrt{2}} |0\rangle - \frac{1}{\sqrt{2}} |1\rangle$

versus

" $|+\rangle$ with prob. 1/2, and $|-\rangle$ with prob. 1/2".

The former is given by the density matrix

 $\rho = \frac{1}{2} |0\rangle\langle 0| + \frac{1}{2} |1\rangle\langle 1| = \frac{1}{2} \mathbb{I}$

and the latter by

$$\begin{aligned} \frac{1}{2}|+\rangle\langle+|+\frac{1}{2}|-\rangle\langle-|\\ &=\frac{1}{4}(|0\rangle+|1\rangle)(\langle0|+\langle1|)+\frac{1}{4}(|0\rangle-|1\rangle)(\langle0|-\langle1|)=\rho\end{aligned}$$

Uniqueness of Density-Matrix Representation

Theorem: If $\rho, \sigma \in \text{Dens}(\mathscr{H})$ are distinct, i.e. $\rho \neq \sigma$, then there exists a measurement $\{M_i\}_{i \in I}$ that "distinguishes" them: $\exists i: \operatorname{tr}(M_i^{\dagger}M_i\rho) \neq \operatorname{tr}(M_i^{\dagger}M_i\sigma)$

Proof: Set $M_i = |i\rangle\langle i|$, where $\{|i\rangle\}$ is an orthonormal eigenbasis of $\rho - \sigma$.

Then

 $\operatorname{tr}(M_{i}^{\dagger}M_{i}\rho) - \operatorname{tr}(M_{i}^{\dagger}M_{i}\sigma) = \operatorname{tr}(M_{i}^{\dagger}M_{i}(\rho - \sigma))$ $= \operatorname{tr}(|i\rangle\langle i|i\rangle\langle i|(\rho - \sigma)) = \operatorname{tr}(|i\rangle\langle i|(\rho - \sigma))$ $= \langle i|(\rho - \sigma)|i\rangle = \lambda_{i}\langle i|i\rangle = \lambda_{i}$

which is non-zero for any eigenvalue $\lambda_i \neq 0$.

Motivation 2: Subsystems

Consider: bipartite system *AB*. It's (possibly mixed) state is given by $\rho_{AB} \in \text{Dens}(\mathcal{H}_A \otimes \mathcal{H}_B)$.

Q: How to describe state of system **B** alone?

A: By the reduced density matrix

 $\rho_{\mathsf{B}} = \operatorname{tr}_{\mathsf{A}}(\rho_{\mathsf{A}\mathsf{B}}) \in \operatorname{Dens}(\mathscr{H}_{\mathsf{B}})$

where:

Definition. The *partial trace* tr_A is the linear map $\operatorname{tr}_A: \operatorname{Lin}(\mathscr{H}_A \otimes \mathscr{H}_B) \to \operatorname{Lin}(\mathscr{H}_B)$ with the defining property that $\operatorname{tr}_A(|\psi\rangle\langle\varphi|\otimes|\xi\rangle\langle\eta|) = \langle\varphi|\psi\rangle|\xi\rangle\langle\eta|$.

NB: In general, $\rho_B = \text{tr}_A(\rho_{AB})$ is **not pure**, even if ρ_{AB} is.

An Equivalent Definition

Proposition: Partial trace tr_A is the unique linear map s.t. $\operatorname{tr}((\mathbb{I} \otimes L)R) = \operatorname{tr}(L \operatorname{tr}_A(R))$ for all $R \in \operatorname{Lin}(\mathscr{H}_A \otimes \mathscr{H}_B)$ and $L \in \operatorname{Lin}(\mathscr{H}_B)$.

Proof: Consider $R = |\psi\rangle\langle\varphi|\otimes|\xi\rangle\langle\eta|$. Then $\operatorname{tr}(L \operatorname{tr}_{\mathcal{A}}(R)) = \operatorname{tr}(L \operatorname{tr}_{\mathcal{A}}(|\psi\rangle\langle\varphi|\otimes|\xi\rangle\langle\eta|))$ For a general R: $= \langle \varphi | \psi \rangle \cdot \operatorname{tr}(L|\xi\rangle \langle \eta |)$ by linearity $= \operatorname{tr}(|\psi\rangle\langle\varphi|) \cdot \operatorname{tr}(L|\xi\rangle\langle\eta|)$ $= \operatorname{tr}(|\psi\rangle\langle\varphi|\otimes L|\xi\rangle\langle\eta|)$ $= \operatorname{tr} ((\mathbb{I} \otimes L)(|\psi\rangle\langle\varphi|\otimes|\xi\rangle\langle\eta|))$ $= \operatorname{tr}((\mathbb{I} \otimes L)R)$.

Justification for the Partial Trace

Say: state of AB is given by $\rho_{AB} \in \text{Dens}(\mathscr{H}_A \otimes \mathscr{H}_B)$.

Want: measure **B** (alone) using measurement $\{M_i\}_{i \in I}$.

By applying Born's rule to ρ_{AB} , we get

 $p_{i} = \operatorname{tr}((\mathbb{I} \otimes M_{i})^{\dagger}(\mathbb{I} \otimes M_{i}) \rho_{AB})$ $= \operatorname{tr}((\mathbb{I} \otimes M_{i}^{\dagger}M_{i}) \rho_{AB})$ $= \operatorname{tr}(M_{i}^{\dagger}M_{i} \operatorname{tr}_{A}(\rho_{AB}))$

i.e., p_i can be computed (using Born's rule) from $\rho_B = \text{tr}_A(\rho_{AB})$.

Example

Consider:

$$|\varphi_{AB}\rangle = \frac{1}{\sqrt{2}} (|0\rangle \otimes |0\rangle + |1\rangle \otimes |1\rangle)$$

Corresponding density matrix:

 $\begin{aligned} |\varphi_{AB}\rangle\langle\varphi_{AB}| &= \frac{1}{2} \big(|0\rangle\otimes|0\rangle + |1\rangle\otimes|1\rangle\big) \big(\langle 0|\otimes\langle 0| + \langle 1|\otimes\langle 1|\big) \\ &= \frac{1}{2} \big(|0\rangle\langle 0|\otimes|0\rangle\langle 0| + |0\rangle\langle 1|\otimes|0\rangle\langle 1| + |1\rangle\langle 0|\otimes|1\rangle\langle 0| + |1\rangle\langle 1|\otimes|1\rangle\langle 1|\big) \end{aligned}$

Applying tr_A:

$$\operatorname{tr}_{A}(|\varphi_{AB}\rangle\!\langle\varphi_{AB}|) = \frac{1}{2}(|0\rangle\!\langle 0| + |1\rangle\!\langle 1|)$$

i.e., the state " $|0\rangle$ with prob. 1/2, and $|1\rangle$ with prob. 1/2"

Acting on a Subsystem

Fact: For any $\rho_{AB} \in \text{Dens}(\mathscr{H}_A \otimes \mathscr{H}_B)$ and unitary $U \in \text{Uni}(\mathscr{H}_A)$: $\operatorname{tr}_A((U \otimes \mathbb{I}) \rho_{AB}(U \otimes \mathbb{I})^{\dagger}) = \operatorname{tr}_A(\rho_{AB})$

Proof: Consider $|\psi\rangle\langle\varphi|\otimes|\xi\rangle\langle\eta|\in\operatorname{Lin}(\mathscr{H}_{A}\otimes\mathscr{H}_{B})$. Then $\operatorname{tr}_{A}((U\otimes\mathbb{I})(|\psi\rangle\langle\varphi|\otimes|\xi\rangle\langle\eta|)(U\otimes\mathbb{I})^{\dagger}) = \operatorname{tr}_{A}(U|\psi\rangle\langle\varphi|U^{\dagger}\otimes|\xi\rangle\langle\eta|)$ $= \langle\varphi|U^{\dagger}U|\psi\rangle|\xi\rangle\langle\eta| = \langle\varphi|\psi\rangle|\xi\rangle\langle\eta| = \operatorname{tr}_{A}(|\psi\rangle\langle\varphi|\otimes|\xi\rangle\langle\eta|)$

For a general $\rho_{AB} \in \text{Dens}(\mathscr{H}_A \otimes \mathscr{H}_B)$: by linearity

Thus:

It is impossible to affect B by acting (unitarily) on A.

Acting on a Subsystem - Continued

The same holds for measurements:

Example: Measure system A of

$$|\varphi_{AB}\rangle = \frac{1}{\sqrt{2}} (|0\rangle \otimes |0\rangle + |1\rangle \otimes |1\rangle)$$

in computational basis:

State of *B* collapses to the state:

" $|0\rangle$ with prob. 1/2, and $|1\rangle$ with prob. 1/2"

which equals $\rho_B = \frac{1}{2}|0\rangle\langle 0| + \frac{1}{2}|1\rangle\langle 1| = \operatorname{tr}_A(|\varphi_{AB}\rangle\langle\varphi_{AB}|)$.

Thus, still:

nonsignaling principle

It is impossible to affect B by acting on A.

Purification

Have seen, in general:

tracing out A of **pure** state $|\varphi_{AB}\rangle$ gives a **mixed** state ρ_{B} .

Q: Can every mixed state be obtained this way?

A: Yes!

Theorem. $\forall \rho_B \in \text{Dens}(\mathscr{H}_B) \exists |\varphi_{AB}\rangle \in \mathscr{H}_A \otimes \mathscr{H}_B \text{ with } \mathscr{H}_A = \mathscr{H}_B \text{ s.t.}$ $\rho_B = \text{tr}_A(|\varphi_{AB}\rangle\langle\varphi_{AB}|).$

Purification

Theorem. $\forall \rho_B \in \text{Dens}(\mathcal{H}_B) \exists |\varphi_{AB}\rangle \in \mathcal{H}_A \otimes \mathcal{H}_B \text{ with } \mathcal{H}_A = \mathcal{H}_B \text{ s.t.}$ $\rho_B = \text{tr}_A(|\varphi_{AB}\rangle\langle\varphi_{AB}|).$

Proof. Write $\rho_{\mathcal{B}} = \sum_{k=1}^{a} \varepsilon_{k} |\varphi_{k}\rangle \langle \varphi_{k}|$ (wlog: $d \leq \dim(\mathcal{H}_{\mathcal{B}})$) Let $\{|k\rangle\}_{k=1..d}$ be an orthonormal basis of $\mathcal{H}_{\mathcal{A}} = \mathcal{H}_{\mathcal{B}}$, and set:

$$\left|\varphi_{AB}\right\rangle = \sum_{k} \sqrt{\varepsilon_{k}} \left|k\right\rangle \otimes \left|\varphi_{k}\right\rangle$$

Then:

And so:

$$\begin{split} |\varphi_{AB}\rangle\!\langle\varphi_{AB}| &= \sum_{k,\ell} \sqrt{\varepsilon_k \varepsilon_\ell} \,|k\rangle\!\langle\ell| \otimes |\varphi_k\rangle\!\langle\varphi_\ell| \\ \mathrm{tr}_A\big(|\varphi_{AB}\rangle\!\langle\varphi_{AB}|\big) &= \sum_{k,\ell} \sqrt{\varepsilon_k \varepsilon_\ell} \,\langle k|\ell\rangle |\varphi_k\rangle\!\langle\varphi_\ell| \\ &= \sum_k \varepsilon_k |\varphi_k\rangle\!\langle\varphi_k| = \rho_B \end{split}$$

Uniqueness of Purification

Q: Is the purification **unique**?

A: No! Applying unitary U to A doesn't affect **B**:

 $\mathrm{tr}_{\mathbf{A}}\big((U \otimes \mathbb{I})|\varphi_{\mathbf{A}\mathbf{B}}\rangle\!\langle\varphi_{\mathbf{A}\mathbf{B}}|(U \otimes \mathbb{I})^{\dagger}\big) = \mathrm{tr}_{\mathbf{A}}(|\varphi_{\mathbf{A}\mathbf{B}}\rangle\!\langle\varphi_{\mathbf{A}\mathbf{B}}|) = \rho_{\mathbf{B}} \;.$

But: Unique up to a unitary U on A:

Theorem. If $\operatorname{tr}_{A}(|\varphi_{AB}\rangle\langle\varphi_{AB}|) \stackrel{\approx}{=} \operatorname{tr}_{A}(|\psi_{AB}\rangle\langle\psi_{AB}|)$ then $\exists U \in \operatorname{Uni}(\mathscr{H}_{A})$ s.t. $|\psi_{AB}\rangle \stackrel{\approx}{=} (U \otimes \mathbb{I})|\varphi_{AB}\rangle.$

(approximate version: Uhlman's Theorem)

Application: Impossibility of QBC

Commitment Schemes

- (Bit) commitment scheme = digital analogue of:
 putting a message, or a bit, in a vault
 and revealing it later

- Security properties:
 - hiding: Bob cannot see message/bit "inside" commitment
 - binding: Alice cannot change her mind
- Important cryptographic primitive, used for
 - coin tossing
 - zero-knowledge proofs
 - multiparty computation
 - ▶ etc.

Impossibility

- Classical (non-quantum) BC: scheme cannot be unconditionally hiding and binding
- Indeed: Unconditionally *binding* ⇒ committed message is determined by Bob's info
 ⇒ can in principle be computed
 ⇒ not unconditionally *hiding*
- Reasoning doesn't apply in quantum setting
- After invention of QKD, strong believe in possibility of QBC
- Several schemes proposed in late 80's and early 90's.
- 1996/97: Mayers / Lo & Chau showed impossibility of QBC.

Impossibility Proof (Sketch)

- Consider potential QBC scheme
- Solve Look at joint state after commit phase $|\varphi^0_{AB}\rangle$ or $|\varphi^1_{AB}\rangle$

WLOG: may assume this state to be pure

depending on whether honest Alice committed to 0 or 1

- Solution By hiding property: $\operatorname{tr}_{A}(|\varphi^{0}_{AB}\rangle\langle\varphi^{0}_{AB}|) \approx \operatorname{tr}_{A}(|\varphi^{1}_{AB}\rangle\langle\varphi^{1}_{AB}|)$
- Final Thus, by Uhlmans Theorem: $\exists U \in \text{Uni}(\mathscr{H}_{A}): |\varphi^{1}_{AB}\rangle \approx (U \otimes \mathbb{I}) |\varphi^{0}_{AB}\rangle.$
- So, dishonest Alice can (honestly) commit to, say, 0, but can still "change her mind" by applying U to her state.

Classical versus Quantum Information

Consider: non-empty finite set \mathcal{X}

- We understand $x \in \mathcal{X}$ as **classical** information
- Want: capture classical information using quantum formalism

For that,

- ▶ consider $\mathcal{H}_X = \mathbb{C}^{|\mathcal{X}|}$
- ▶ fix orthonormal basis $\{|x\rangle\}_{x \in \mathcal{X}}$ of \mathcal{H}_X
- ▶ identify $x \in \mathcal{X}$ with quantum state $|x\rangle \in \mathcal{H}_X$ (resp. $|x\rangle\langle x|$)

Holding *classical* x is **equivalent** to holding *quantum* state $|x\rangle$: x can be recovered from $|x\rangle$ by measuring in basis $\{|x\rangle\}_{x\in\mathcal{X}}$.

Randomized Classical Information

Randomized classical info, given by random variable X, such that X=x with prob. $P_X(x)$, is then identified with

$$\rho_X = \sum_x P_X(x) |x\rangle \langle x| \in \text{Dens}(\mathscr{H}_X)$$

Finally, a hybrid of *classical* and *quantum* info, where
▶ X=x with prob. P_X(x),
▶ state of A is given by ρ^x_A ∈ Dens(ℋ_A)

 $\rho_{XA} = \sum_{x} P_X(x) |x\rangle \langle x| \otimes \rho_A^x \in \text{Dens}(\mathcal{H}_X \otimes \mathcal{H}_A)$

Example: Measurement

Let $\{M_x\}_{x \in \mathcal{X}}$ be a measurement on a system A. Applied to a state $\rho \in \text{Dens}(\mathcal{M}_A)$:

- ▷ observe *x* with probability $p_x = tr(M_x \rho M_x^{\dagger})$
- ▶ state collapses to $\rho^x = M_x \rho M_x^{\dagger} / p_x$.

Captured by "hybrid state":

$$\sum_{x} p_{x} |x\rangle \langle x| \otimes \rho^{x} = \sum_{x} |x\rangle \langle x| \otimes M_{x} \rho M_{x}^{\dagger}$$
$$= \sum_{x} (|x\rangle \otimes M_{x}) \rho (\langle x| \otimes M_{x}^{\dagger})$$

where $|x\rangle \otimes M_x \colon \mathscr{H}_A \to \mathscr{H}_X \otimes \mathscr{H}_A$, $|\varphi\rangle \mapsto |x\rangle \otimes M_x |\varphi\rangle$ and $\sum (\langle x | \otimes M_x^{\dagger})(|x\rangle \otimes M_x) = \sum \langle x | x \rangle M_x^{\dagger} M_x = \sum M_x^{\dagger} M_x = \mathbb{I}$

CPTP Maps (or Quantum Channels)

Definition. \mathcal{E} : $\operatorname{Lin}(\mathscr{H}_{A}) \to \operatorname{Lin}(\mathscr{H}_{A'})$ is called a *CPTP map* if $\mathcal{E}(R) = \sum_{i} E_{i}RE_{i}^{\dagger}$ or quantum channel where $E_{i}: \mathscr{H}_{A} \to \mathscr{H}_{A'}$ such that $\sum E_{i}^{\dagger}E_{i} = \mathbb{I}$.

Examples:

▶ measuring a quantum state: $\rho \mapsto \sum (|x\rangle \otimes M_x) \rho(\langle x| \otimes M_x^{\dagger})$

▶ applying a unitary: $\rho \mapsto U\rho U^{\dagger}$

appending a (fixed) state |\varphi\?:
\rho \mapsto \rho \oxedsymbol{\lambda} \varphi | = (\mathbb{I} \oxedsymbol{\lambda} |\varphi\))\rho (\mathbb{I} \oxedsymbol{\lambda} \varphi|)
"throwing away" part of a state:
\rho_{AB} \mapsto tr_A(\rho_{AB}) = \sum (\lambda i \oxedsymbol{\lambda} \mathbb{I})\rho_{AB}(|i\oxedsymbol{\lambda} \mathbb{I})

CPTP Maps (or Quantum Channels)

Definition. \mathcal{E} : $\operatorname{Lin}(\mathcal{H}_{A}) \to \operatorname{Lin}(\mathcal{H}_{A'})$ is called a *CPTP map* if $\mathcal{E}(R) = \sum_{i} E_{i}RE_{i}^{\dagger}$ or quantum channel where $E_{i}: \mathcal{H}_{A} \to \mathcal{H}_{A'}$ such that $\sum E_{i}^{\dagger}E_{i} = \mathbb{I}$.

Thus:

Every quantum operation is described by a CPTP map. And: pplying a unitary

Every CPTP map describes a quantum operation.

"throwing away" part of a state:

 $\rho_{AB} \mapsto \operatorname{tr}_{A}(\rho_{AB}) = \sum (\langle i | \otimes \mathbb{I}) \rho_{AB}(|i\rangle \otimes \mathbb{I})$

Characterizations of CPTP maps

Theorem. Let $\mathcal{E}: \operatorname{Lin}(\mathcal{H}_{A}) \to \operatorname{Lin}(\mathcal{H}_{A'})$. The following are " \Leftrightarrow " 1. \mathcal{E} is a CPTP map (i.e., $\mathcal{E}(R) = \sum E_i R E_i^{\dagger}$). Kraus representation 2. \mathcal{E} is completely positive and trace preserving. 3. $\exists \mathcal{H}_E$ and $U \in \operatorname{Uni}(\mathcal{H}_A \otimes \mathcal{H}_E \otimes \mathcal{H}_{A'})$ s.t. $\forall \rho \in \operatorname{Dens}(\mathcal{H}_A)$: $\mathcal{E}(\rho) = \operatorname{tr}_{\mathcal{A}E}(U(\rho \otimes |0\rangle \langle 0| \otimes |0\rangle \langle 0|) U^{\dagger})$ Steinspring representation where the $|0\rangle$'s are default state vectors in \mathcal{H}_E and $\mathcal{H}_{A'}$.

Application: No-Cloning (Part II)

No-Cloning

Theorem. Let \mathcal{E} be a CPTP map, and $|\varphi\rangle, |\psi\rangle$ state vectors. If $\mathcal{E}(|\varphi\rangle\langle\varphi|) = |\varphi\rangle\langle\varphi|\otimes|\varphi\rangle\langle\varphi|$ and $\mathcal{E}(|\psi\rangle\langle\psi|) = |\psi\rangle\langle\psi|\otimes|\psi\rangle\langle\psi|$. then $|\langle\varphi|\psi\rangle| = 1$ (and thus $|\varphi\rangle\langle\varphi| = |\psi\rangle\langle\psi|$) or $\langle\varphi|\psi\rangle = 0$.

Proof:

- ▷ Consider Steinspring representation of \mathcal{E} and the states $\mathcal{E}(|\varphi\rangle\langle\varphi|)$ and $\mathcal{E}(|\psi\rangle\langle\psi|)$ before the partial trace: $U|\varphi\rangle|0\rangle|0\rangle$ and $U|\psi\rangle|0\rangle|0\rangle$.
- ▶ By uniqueness of purification, must be of the form $U|\varphi\rangle|0\rangle|0\rangle = |\varphi\rangle|\varphi\rangle|\varphi_0\rangle$ and $U|\psi\rangle|0\rangle|0\rangle = |\psi\rangle|\psi\rangle|\psi_0\rangle$.
- ▶ But then: $\langle \varphi | \psi \rangle = \langle \varphi | \langle 0 | \langle 0 | U^{\dagger} U | \psi \rangle | 0 \rangle | 0 \rangle = \langle \varphi | \psi \rangle^{2} \langle \varphi_{0} | \psi_{0} \rangle$ which implies that $|\langle \varphi | \psi \rangle| = 1$ or $\langle \varphi | \psi \rangle = 0$.

No-Cloning

Theorem. Let \mathcal{E} be a CPTP map, and $|\varphi\rangle, |\psi\rangle$ state vectors. If $\mathcal{E}(|\varphi\rangle\langle\varphi|) = |\varphi\rangle\langle\varphi|\otimes|\varphi\rangle\langle\varphi|$ and $\mathcal{E}(|\psi\rangle\langle\psi|) = |\psi\rangle\langle\psi|\otimes|\psi\rangle\langle\psi|$. then $|\langle\varphi|\psi\rangle| = 1$ (and thus $|\varphi\rangle\langle\varphi| = |\psi\rangle\langle\psi|$) or $\langle\varphi|\psi\rangle = 0$.

Proof:

 Cons state
 Using Uhlman's Theorem: ace: Also approximate cloning is impossible

▶ By uniqueness of purification, must be of the form $U|\varphi\rangle|0\rangle|0\rangle = |\varphi\rangle|\varphi\rangle|\varphi_0\rangle$ and $U|\psi\rangle|0\rangle|0\rangle = |\psi\rangle|\psi\rangle|\psi_0\rangle$.

▶ But then: $\langle \varphi | \psi \rangle = \langle \varphi | \langle 0 | \langle 0 | U^{\dagger} U | \psi \rangle | 0 \rangle | 0 \rangle = \langle \varphi | \psi \rangle^{2} \langle \varphi_{0} | \psi_{0} \rangle$ which implies that $|\langle \varphi | \psi \rangle| = 1$ or $\langle \varphi | \psi \rangle = 0$.

Back to theory: Distance between States

Trace-Norm and -Distance

Definition. The *trace norm* of a Hermitian $D \in \text{Lin}(\mathscr{H})$ is $\|D\| := \sum |\lambda_i|$

where $\lambda_1, ..., \lambda_d \in \mathbb{R}$ is the list of eigenvectors (w/ multiplicity).

Example: The λ_i 's of $\rho \in \text{Dens}(\mathscr{H})$ are ≥ 0 and add to 1. So: $\|\rho\| = 1$.

Definition. The *trace distance* of $\rho, \sigma \in \text{Dens}(\mathscr{H})$ is $\delta(\rho, \sigma) := \frac{1}{2} \|\sigma - \rho\|.$ If P and Q are distributions over X, and

$$\rho = \sum P(x)|x\rangle\langle x|$$
 and $\sigma = \sum Q(x)|x\rangle\langle x|$

the corresponding density matrix representations, then

$$\rho - \sigma = \sum (P(x) - Q(x)) |x\rangle \langle x|$$

and thus

$$\delta(\rho,\sigma) = \frac{1}{2} \sum |P(x) - Q(x)|$$

which is the *statistical distance* between P and Q, which captures exactly how well P and Q can be distinguished.

Trace Distance and Distinguishability

Theorem. Let \mathcal{E} be a CPTP map and $\rho, \sigma \in \text{Dens}(\mathscr{H})$, then $\delta(\mathcal{E}(\rho), \mathcal{E}(\sigma)) \leq \delta(\rho, \sigma)$.

In particular:

 $\delta(\rho,\sigma)$ bounds how well ρ & σ can be distinguished.

Proposition. $\forall \rho, \sigma \in \text{Dens}(\mathscr{H}) \exists \text{ measurement } \mathcal{M} \text{ s.t.}$ $\delta(\mathcal{M}(\rho), \mathcal{M}(\sigma)) = \delta(\rho, \sigma).$

Thus:

 $\delta(\rho,\sigma)$ captures exactly how well $\rho \& \sigma$ can be distinguished.

Proof of Proposition

Proposition. $\forall \rho, \sigma \in \text{Dens}(\mathscr{H}) \exists \text{ measurement } \mathcal{M} \text{ s.t.}$ $\delta(\mathcal{M}(\rho), \mathcal{M}(\sigma)) = \delta(\rho, \sigma).$

Proof: Let \mathcal{M} be measurement given by $\{M_i = |i\rangle\langle i|\}$, where $\{|i\rangle\}$ is an orthonormal eigenbasis of $\rho - \sigma$. Then

 $2 \cdot \delta(\mathcal{M}(\rho), \mathcal{M}(\sigma)) = \sum |\operatorname{tr}(|i\rangle\langle i|\rho) - \operatorname{tr}(|i\rangle\langle i|\sigma)|$ $= \sum |\operatorname{tr}(|i\rangle\langle i|(\rho-\sigma))|$ $= \sum |\langle i|(\rho-\sigma)|i\rangle|$ $= \sum |\lambda_i\langle i|i\rangle|$ $= \sum |\lambda_i|$ $= \sum |\lambda_i|$ $= 2 \cdot \delta(\rho, \sigma)$

Take-Home Summary

- Quantum state is described by
 a state vector for pure state, or
 a density matrix for mixed states.
- I mathematical rules for how the state behaves under:
 - unitary operation
 appending a state
 - measurement
 "throwing away" part
- Purification: every mixed state can be purified uniquely.
- Classical info can be captured by quantum formalism.
- CPTP maps: captures all possible quantum operations
- Trace distance: captures how similarly states behave