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Dirac’s Bra-Ket Notation

¢ 9. complex (finite-dimensional) Hilbert space
¢ Elements in 9 are denoted |¢), and called ket-vectors.

¢ Inner product of |p),|v) € 97 is denoted (p|)).

Example: 9% = C? with l

- () w0 ()

(0]0) =1=(1|1) and (0|]1) =0

where



Dirac’s Bra-Ket Notation

¢ 7. complex (finite-dimensional) Hilbert space
¢ Elements in 9 are denoted |¢), and called ket-vectors.

¢ Inner product of |p),|y) € % is denoted (p|y).

¢ For |p) €9, the bra-vector (| is functional %7 — C s.t.

(pllv) = (el) VIh)eA
¢ For |p),|v) e 9, the outer product |y) | €Lin(97) is s.t.

Y)X@ll€) = [h)(pl€) VIeA

¢ The trace is (unique) linear functional tr: Lin(%) — C s.t.

tr(|Y)Xe|) = (plY) Vp),|lv)edt



Dirac’s Bra-Ket Notation

¢ 9. complex (finite-dimensional) Hilbert space

¢ Elements in 9 are denoted |¢), and called ket-vectors.

Fact. tr is cyclic: tr(LR) = tr(RL) ¥V L,ReLin(9%7). '
Proof. For R = [¢){¢]: |
tr( L) el) = (@l L{th) = (|l ) = tr(jy)e|L)

For general R: by linearity.
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¢ The trace is (unique) linear functional tr: Lin(%) — C s.t.

tr(|Y)Xe|) = (plY) Vp),|lv)edt



Reminder: The State-Vector Formalism

¢ Quantum system A: Hilbert space 9% (or %/a®9% etc.)

¢ State of A: norm-1 “state vector’

o) €A

¢ (Unitary) operation: U € Uni(9%). Rule: U maps |p) to Uly)

¥ Measurement. {M;}icr s.t. ), M M;=1. Rule:
» observe 7 with probability Born’s rule
f
pi = (| M Mi|p)

» state collapses to post-measurement state M;|p) /\/pi .



In case of rank-1 projective measurements, i.e., ’

“measuring in a (orthonormal) basis {|i)}ic?’,
{M;}icr is given by M; = |i)i|, and hence
pi = (| Mt Milp) = (p||2)(i]|e)(e][@) = {@li)(i|)(i]p)
= (pli)ile) = [(i]p)|* = |l
for |p) = ZZO@;\@.

¥ Measurement. {M;}icr s.t. ), M M;=1. Rule:
» observe 7 with probability Born’s rule
f
pi = (| M Mi|p)

» state collapses to post-measurement state M;|p) /\/pi .



(First) Goal: A New Formalism




Motivation 1: Randomized States

Say: Alice prepares system A in state |) with probability p
and in state |¢) with probability 1—p, and gives A to Bob.

Q: What’s a proper description of the state of A to Bob?

A: The probability distribution over the state vectors:

14

@) with probability p, and i) with probability 1—p”

Caveat: This representation is not unique!



il 1 ‘

Example +) =L 10) + L |1) ‘
_— it |

Consider: =) V2 0) - /2 1)

14

0) with prob. 1/2, and |1) with prob. 1 /2’:

Versus

11

+) with prob. 1/2, and |—) with prob. 1/2".

Then, measuring in computational basis {|0),|1) }:

observe a random bit as outcome,
and the same for the Hadamard basis {|+),|]—)}.

Actually, cannot be distinguished by any measurement.
As such, the two states are identical.



Motivation 2: Subsystems

Given: state |pas) € 7a®9s of a bipartite system AB.

Q: How to describe state of system B alone?

Examples:

> If |paB) = |wa)®|wB) then, quite obviously: |pg)

> But if, say,

|
oaB) = ﬁ(l()} ® |0) +[1) ® |1))

then it's not clear - and it's not 5 (10) + 1)) = [+) 1



Towards Density Matrices

Consider: randomized state
“lor) with probability s; (k€ K)*

Q: How does it behave under measurement {M;}icr ?

A: Conditioned on the state being |x), observe i with prob.

pilk = (i Mt My|or) = tr( Mt Mi|or)Xor|)
and thus, (on average) observe : with probability

b Ek] Ek Pilk = 2/; ertr( Mit Mi| or) x| )
= tr(MiTMz'(zk;ék‘QOngOkD)

Thus: The matrix p = >, ex|pr) x| carries all the information,
and can be used to describe the state.



Density Matrices

The matrix p = > er| i) satisfies:
1. Positivity: ¥ |v) €
(WlplY) = 2ier(|orf i) = 2ie[(len) |* = 0

2. Normalization:
tr(p) = duertr(|orpr|) = dier(prpr) = 2ier =1
Definition: Such p €Lin(.%) is called density matrix. \\rite
Dens(7) := 1p €Lin(X) | p 2 0, tr(p) = 1}

Theorem: p €Lin(.%) is a density matrix iff p = > x| r)( vk
for |or) € % with (pilpr) = 1, and e > 0 with Y e, = 1.



Density Matrices

Terminology: /
» Such a “randomized state” is called mixed state. |

> A “deterministic state”, given by |¢p) € 97, is called pure.
The corresponding density matrix is then

p = loXel .

Definition: Such p €Lin(.%) is called density matrix. \\rite
Dens(7) := {p €Lin(%) | p =2 0, tr(p) =1}

Theorem: p € Lin(%) is a density matrix iff p = Y x| or)ox
for |or) € % with (pilpr) = 1, and e > 0 with Y e, = 1.



The Density-Matrix Formalism

¢ Quantum system A: Hilbert space %7 (or %7498 etc.)

¢ State of A:{density matrix pa € Dens(.%)

¢ (Unitary) operation: U € Uni(%). Rule: maps pa to UpaU!

¥ Measurement: { M;}icr s.t. ) MiM;=1 . Rule:
» observe 3 with probability Born’s rule
’»»
Pi— tr(MﬂLMz'pA) = tr(M@'pAMﬁ)
» state collapses to pa = M;paMit/p; .



S 1 ¢

Example =710+ 510 1
= —y=10)-1]1

Consider: =) =510 -5 )

: | ——

0) with prob. 1/2, and |1) with prob. 1/2”
versus

14

+) with prob. 1/2, and |—) with prob. 1/2".

The former is given by the density matrix

1 1 1
:—OO —11:—
p= 31001 + 5/1X1] =1

and the latter by

1; 1
N 5 )

= Z(10)+) O+ + 7 (0)— 1) (0 —{1]) = 5



Uniqueness of Density-Matrix Representation

Theorem: If p,c € Dens(9) are distinct, i.e. p=o, then there
exists a measurement { M;}ier that “distinguishes” them:

Ji: tr( Mit M; p) = tr( Mt M;o)

Proof: Set M; = |i)(¢],
{|7)} is an orthonormal eigenbasis of p—o.

Then
tr( Mit M; p) —tr( Mit Mio) = tr( Mit M;(p—0))
= tr(|i)ili)i] (p—0)) = tr(|i)i](p—0))
= (i[(p—0o)]i) = Ai{i]t) = A

which is non-zero for any eigenvalue \; = 0.



Motivation 2: Subsystems

Consider: bipartite system AB.
It's (possibly mixed) state is given by pas € Dens(%a®.9%B).

Q: How to describe state of system B alone?

A: By the reduced density matrix
pB = tra(pas) € Dens(7s)

where:

Definition. The partial trace tra is the linear map
tra: Lin(%a®98) — Lin(%B)
with the defining property that
tra(|¥)(e|®[E)N]) = (e[} |E)n].

NB: In general, ps = tra(pas) is not pure, even if pas is.



An Equivalent Definition

Proposition: Partial trace tra is the unique linear map s.t.
tr((I®L)R) = tr(L tra(R))
forall R € Lin(%a®98) and L € Lin(%B).

Proof: Consider R=|v¥){¢|®|&){n|. Then
tr(L tra(R)) = tr(L tra(|y)e|®[E)n]))

= {plv) - tr(LIE)n]) o a generd K-
= tr(|9)¢l) - tr(Z|EXn)  py tinear®y

= tr(|9) (el LIE)n])

= tr((IRL)([¢)(el@I€)n))

—tr(([SE)R)



Justification for the Partial Trace

Say: state of AB is given by pas € Dens(.%a ®.9B).

Want: measure B (alone) using measurement { M;}icr.

By applying Born’s rule to pas, we get

pi = tr((IQM) (I M;) pas)
= tr((I @Mt M;) pas)
= tI‘(M@'TMZ' tl“A(,OAB))

i.e., pi can be computed (using Born’s rule) from ps = tra(pas).



Example

Consider:

1
== e =u= S0l
PAB) \/5(|> 0) + 1) ®|1))
Corresponding density matrix:

easipns] = 5(10)@10) + [1®1)) ((0]@{0] + (1 (1]

= %(\oxm@\oxm + [0X1®[0)1] + [1X0[®[1)0] + [1X1[®[1)1])

Applying tra :
tra(lpasipasl) = 5 (10X0] + 1)1

.e., the state “|0) with prob. 1/2, and |1) with prob. 1/2”



Acting on a Subsystem

Fact: For any pas € Dens(%a®98) and unitary Ue Uni(.%a):
tra((UR1)pas(UR1)T) = tra(pas)

Proof: Consider |1)(|®|£)(n| € Lin(%a®5%8). Then

tra((UST) ([9)(el@IEn) (UST)!) = tra(Ulp)e|Ut@|€)n])
= (p|UTUY) |§)n] = (@]¥) [§)(n] = tra(|¥){e|®|E)n])

For a general pas€ Dens(%a®.%8): by linearity

Thus:
It is Impossible to affect B by acting (unitarily) on A.



Acting on a Subsystem - Continued

The same holds for measurements:

Example: Measure system A of

1
= — | UH® == e 1l
©0AB) \/§(H 0) + 1) ®]1))
iIn computational basis:

State of B collapses to the state:
0) with prob. 1/2, and |1) with prob. 1/2”

11

which equals ps = 3|0)0] + 3|1X1] = tra(|as)Xpasl) .

Thus, still: ~ 11onsignaling princil\)le -

It is Impossible to affect B by acting on A



Purification

Have seen, in general:
tracing out A of pure state |pag) gives a mixed state ps.

Q: Can every mixed state be obtained this way?

A: Yes!

Theorem. V pg € Dens(%B8) 3 |paB) € %a @58 With Ha=9B S.1.
pB = tra(|pas)(pas|) -



Purification

Theorem. V pg € Dens(%B8) 3 |paB) € a5 With Ha=9B S.1.
pB = tra(|pas)(pas|) -

d
Proof. Write ps :kZ x| or x| (wWlog: d<dim(%B) )
=
Let {|k)}x=1..« be an orthonormal basis of %a=%g, and set:
[CaB) = Z VEK k) ®|pk)
Eheh:
‘paBXpaB| = Z VeEree [E)XE @[k Xpe]

And so:
tra(|eas)easl) Z\/5k5£ (k10)or X el

= Z&ch@k (Pr| = pB
k



Uniqueness of Purification

Q: /s the purification unique?

A: No! Applying unitary U to A doesn'’t affect B:
tra((URT)|pas)asl(URT)T) = tra(|pas)pas|) = ps .

But: Unique up to a unitary U on A:

Theorem. If

then =

Y
Y

tra(|pas)(was|) = tra(|iaB)as|)

Uc Uni(Ha) s.t.
vaB) = (USI)|¢as).

(approximate version: Uhlman's Theorem)



Application: Impossibility of QBC




Commitment Schemes

¢ (Bit) Commitment scheme = digital analogue of:

¢ Security properties:
> hiding. Bob cannot see message/bit “inside” commitment
> binding: Alice cannot change her mind

¢ Important cryptographic primitive, used for
» coin tossing
» zero-knowledge proofs
> multiparty computation
> etc.



Impossibility

¢ Classical (non-quantum) BC:
scheme cannot be unconditionally hiding and binding

€

Indeed: Unconditionally binding
— committed message is determined by Bob’s info
= can In principle be computed
— not unconditionally hiding

¢ Reasoning doesn’t apply in quantum setting
¢ After invention of QKD, strong believe in possibility of QBC
¢ Several schemes proposed in late 80’s and early 90's.

*€c

1996/97:. Mayers / Lo & Chau showed impossibility of QBC.



Impossibility Proof (Sketch)

¢ Consider potential QBC scheme

¢ Look at joint state after commit phase WLOG: may assyme?
Pag) or [¢has) ihis state to be pure |
e— ".d

depending on whether honest Alice committed to 0 or 1
¢ By hiding property:
tra(|¢as)¢as|) ~ tra(|¢as)¢as|)

¢ Thus, by Uhlmans Theorem:
FUe Uni(Ha): |p'as) = (UL )|'aB).

€

S0, dishonest Alice can (honestly) commit to, say, 0, but
can still “"change her mind” by applying U to her state.



Back to theory...




Classical versus Quantum Information

Consider: non-empty finite set X
We understand x € X’ as classical information

Want: capture classical information using quantum formalism

For that,
» consider %x =Cl&
» fix orthonormal basis {|z)}.cx of %x

> identify x € X with quantum state |z) € %x (resp. |z){x|)

Holding classical z is equivalent to holding quantum state |z):
z can be recovered from |x) by measuring in basis {|z)}zex.



Randomized Classical Information

Randomized classical info, given by random variable X,
such that X=z with prob. Px(z), is then identified with

Do — ZPX )|z Xx| € Dens(%x)

Finally, a hybrid of classical and quantum info, where
» X=x with prob. Px(z),
» state of A is given by p% € Dens(%a)

is then identified with

T = ZPX )zXz| ® pa € Dens(HxRQ57A)



Example: Measurement

Let { M.}.cx be a measurement on a system A.

Applied to a state p € Dens(%a) :

> observe x with probability p, = tr( MupM.)
> state collapses to p*= M,pM,'/p. .

Captured by “hybrid state™:
> pelalal ® " =3 |eNa| © Map]

—Z YR M) p ({x|@M])

where |2)QM,: Jla — AxQIA , |@) » |1) QM) and




CPTP Maps (or Quantum Channels)

Definition. & Lin(%a) — Lin(%a) is called a CPTP map if

or €

E(R) = Z EZ'REJ quantum channe|
i P

where E;: 94 — % such that )  E/E; =1.

Examples:

> measuring a quantum state: p = Y (|z) @ Mz) p({z| @ M)
> applying a unitary: p » Up U
» appending a (fixed) state |p):

p e poleXel = (IR]p)) p(Ie(e|)
> “throwing away” part of a state:

pAB = tra(pas) = 2((i| ®1) pas(|7) @)



CPTP Maps (or Quantum Channels)

Definition. & Lin(%a) — Lin(%a) is called a CPTP map if

E(R) = Z EZ'REQL CIuantun?rchanneli
i P
where E;: 9% — Ja such that Y EfE; =1 .
r h
Thus:
Every quantum operation is described by a CPTP map.
And:

Every CPTP map describes a quantum operation.

- s e —p—) AN —— g ———f—y—s - ) ‘

> “throwing away” part of a state:
pAB > tra(pas) = (1| ®1) pas(|i) @1)

N



Characterizations of CPTP maps

Theorem. Let £: Lin(%a ) — Lin(%a'). The following are “&”

~

. . K
1. £is a CPTP map (i.e., ER) =X EREY). reprosentation §
2. £ is completely positive and trace preserving.
3. 3 9 and UcUni(HaQHE Q5a ) s.t. VpeDens(Ha) :
Elp) = trae(U(p@|0)0|[0X0]) U)  goreinspring

representation

where the |0)’s are default state vectors in %7 3T Ta .

I
4 N

0) 10)
=]
U
=
|

I
>

\_ J




Application: No-Cloning (Part Il)




No-Cloning

Theorem. Let £ be a CPTP map, and |y), |¢) state vectors. If

E(loXpl) = loXpl®|p)Xe| and E(|Y)XY|) = [PXY|@[PXY] .
then |(p]y)|=1 (and thus |p)p|=|1)1|) or (¢|¥)=0.

Proof:

» Consider Steinspring representation of £ and the
states £(|p)p|) and E(|w)y|) before the partial trace:

Ulp)10)0) and U]9)[0)]0).

» By unigueness of purification, must be of the form

Ul9)10)10) =[@) @) |wo) @nd Ul4)|0)[0) = [1)[)) |1bo).

> But then: (g[y) = (0[(0[{0]UTU14)|0)[0) = {¢|1)*(@o|tho)
which implies that |{¢|y)|=1 or {©|)=0.



No-Cloning

Theorem. Let £ be a CPTP map, and |y), |¢) state vectors. If

E(loXpl) = loXpl®|p)Xe| and E(|Y)XY|) = [PXY|@[PXY] .
then |(p]y)|=1 (and thus |p)p|=|1)1|) or (¢|¥)=0.

Proof:
> Cons . - i
state Using Uhiman’s Theorem: ‘ace:
Also approximate cloning is impossible f

e
» By uniqueness of purification, must be of the

Ul9)10)10) =[@) @) |wo) @nd Ul4)|0)[0) = [1)[)) |1bo).

> But then: (g[y) = (0[(0[{0]UTU14)|0)[0) = {¢|1)*(@o|tho)
which implies that |{¢|y)|=1 or {©|)=0.



Back to theory: Distance between States




Trace-Norm and -Distance

Definition. The trace norm of a Hermitian D €Lin(.%) is
| DI := 22|\

where \i,...,.\¢ €R Is the list of eigenvectors (w/ multiplicity).

Example: The \'s of p €Dens(%) are > 0 and add to 1. So:

loll = 1.

Definition. The trace distance of p,oc €Dens(.%) is

1
5(p,) = 5 llo =l



The Classical Case

If P and () are distributions over X, and

p= Y, Px)|zXz] and o= ), Q(z)

the corresponding den3|ty matrix representatlons, then

p—o = Y (P(z)— Qx))|z)a]
and thus
o) = 5 YIPla)-

which is the statistical distance between P and (), which
captures exactly how well P and () can be distinguished.



Trace Distance and Distinguishability

Theorem. Let £ be a CPTP map and p,o € Dens(% ), then
5(E(p).E(0)) < 8(p.0).

In particular:
6(p,o) bounds how well p & o can be distinguished.

Proposition. V p,0 € Dens(9%) 34 measurement M s.t.
6(M(p).M(0)) = 6(p.0).

Thus:
6(p,o) captures exactly how well p & o can be distinguished.



Proof of Proposition

Proposition. V p,0 € Dens(9%) 34 measurement M s.t.
6(M(p).M(0)) = 6(p.0).

Proof: Let M be measurement given by { M; =|i)i|}, where

{|7)} is an orthonormal eigenbasis of p—o.
Then

2-6(M(p), M(0)) = 3 Jtx (i)
= Do ltr(la)i(

— Y [(il(p—0)li)

DA (ild)

pPRY

— 5(,0,0')

(i|p) —tr(li)Xilo)|
(i




Almost done...




Take-Home Summary

¢ Quantum state is described by
> a state vector for pure state, or
> a density matrix for mixed states.

¢ 4 mathematical rules for how the state behaves under:

> unitary operation » appending a state
> measurement > “throwing away” part

¢ Purification: every mixed state can be purified - uniquely.
¢ Classical info can be captured by quantum formalism.
¢ CPTP maps: captures all possible quantum operations

¢ Trace distance: captures how similarly states behave



