
The Density Matrix Formalism, 
Quantum Channels, And More

CROSSING Winter School on Quantum Crypto 

Serge Fehr
CWI Amsterdam 

www.cwi.nl/~fehr



 Dirac’s Bra-Ket Notation 

H : complex (finite-dimensional) Hilbert space

Elements in H  are denoted |!!, and called ket-vectors.

 Inner product of |!!,|"! " H  is denoted #!|"!.  

Example: H  = C2 with

and

where 

#0|0! = 1 = #1|1!   and   #0|1! = 0
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 Dirac’s Bra-Ket Notation 

H : complex (finite-dimensional) Hilbert space

Elements in H  are denoted |!!, and called ket-vectors.

 Inner product of |!!,|"! " H  is denoted #!|"!.  

For |!!,|"! " H , the outer product |"!#!| " Lin(H ) is s.t. 

|"!#!||#! = |"!#!|#!   % |#! " H

The trace is (unique) linear functional tr: Lin(H ) $ C s.t. 

tr(|"!#!|) = #!|"!   % |!!,|"! " H

For |!! " H , the bra-vector #!| is functional H  $ C s.t.

#!||"! = #!|"!   % |"! " H



 Dirac’s Bra-Ket Notation 

H : complex (finite-dimensional) Hilbert space

Elements in H  are denoted |!!, and called ket-vectors.

 Inner product of |!!,|"! " H  is denoted #!|"!.  

For |!!,|"! " H , the outer product |"!#!| " Lin(H ) is s.t. 

|"!#!||#! = |"!#!|#!   % |#! " H

The trace is (unique) linear functional tr: Lin(H ) $ C s.t. 

tr(|"!#!|) = #!|"!   % |!!,|"! " H

For |!! " H , the bra-vector #!| is functional H  $ C s.t.

#!||"! = #!|"!   % |"! " H

Fact. tr is cyclic: tr(LR) = tr(RL) % L,R " Lin(H ). 

Proof.  For R = |"!#!|: 

tr(L|"!#!|) = #!| L|"! = #!|L |"! = tr(|"!#!|L)

 For general R: by linearity. 



Quantum system A:  Hilbert space H    (or HA &HB  etc.)

State of A:  norm-1 “state vector” |!! " H

(Unitary) operation: U " Uni(H ). Rule: U  maps |!! to U|!!

Measurement:  {Mi}i "I  s.t. 'Mi†Mi = I. Rule: 
observe i with probability 

pi = #!|Mi†Mi |!!
state collapses to post-measurement state Mi |!!/√pi .

 Reminder: The State-Vector Formalism

Born’s rule



Quantum system A:  Hilbert space H    (or HA &HB  etc.)

State of A:  norm-1 “state vector” |!! " H

(Unitary) operation: U " Uni(H ). Rule: U  maps |!! to U|!!

Measurement:  {Mi}i "I  s.t. 'Mi†Mi = I. Rule: 
observe i with probability 

pi = #!|Mi†Mi |!!
state collapses to post-measurement state Mi |!!/√pi .

 Reminder: The State-Vector Formalism

Born’s rule

In case of rank-1 projective measurements, i.e.,

“measuring in a (orthonormal) basis {|i!}i "I”,

 {Mi}i "I  is given by Mi = |i!#i |, and hence

pi = #!|Mi†Mi |!! = #!||i!#i ||i!#i ||!! = #!|i!#i |i!#i |!!

= #!|i!#i |!! = |#i |!!|2 = |$i|2

 for |!! = ' $i|i! .
i



 (First) Goal: A New Formalism



 Motivation 1: Randomized States

Say:  Alice prepares system A in state |!! with probability p 
and in state |"! with probability 1(p, and gives A to Bob. 

Q: What’s a proper description of the state of A to Bob?

A: The probability distribution over the state vectors: 

“|!! with probability p, and |"! with probability 1(p”

Caveat: This representation is not unique! 



 Example

Then, measuring in computational basis {|0!,|1!}:  

observe a random bit as outcome, 

Consider:  

“|0! with prob. 1/2, and |1! with prob. 1/2”
versus

“|+! with prob. 1/2, and |(! with prob. 1/2”.

and the same for the Hadamard basis {|+!,|(!}. 

Actually, cannot be distinguished by any measurement.
As such, the two states are identical. 



 Motivation 2: Subsystems

Given: state |!AB! " HA &HB of a bipartite system AB. 

Q: How to describe state of system B alone? 

Examples: 

If |!AB! = |!A!&|!B! then, quite obviously: |!B! 

1p
2

�
|0i+ |1i

�
= |+i

But if, say, 

      then it’s not clear - and it’s not                                 !!! 

|'ABi =
1p
2

�
|0i ⌦ |0i+ |1i ⌦ |1i

�



 Towards Density Matrices

Consider: randomized state

“|!k! with probability %k (k "K)“

Q: How does it behave under measurement {Mi}i "I ?

A: Conditioned on the state being |!k!, observe i with prob.

pi|k = #!k|Mi†Mi|!k! = tr(Mi†Mi|!k!#!k|) ,
and thus, (on average) observe i with probability

pi = ' %k pi|k = ' %k tr(Mi†Mi|!k!#!k|)
k k

Thus: The matrix & = ' %k |!k!#!k| carries all the information, 
           and can be used to describe the state. 

= tr(Mi†Mi (' %k |!k!#!k|))
k



 Density Matrices

The matrix & = ' %k |!k!#!k| satisfies:

1. Positivity: % |"! " H

#"|&|"! = ' %k #"|!k!#!k|"! = ' %k |#"|!k!|2 ) 0

2. Normalization:

tr(&) = ' %k tr(|!k!#!k|) = ' %k #!k|!k! = ' %k  = 1

Definition: Such & " Lin(H ) is called density matrix. Write
Dens(H ) := {& " Lin(H ) | & ) 0, tr(&) = 1}

Theorem: & " Lin(H ) is a density matrix iff & = ' %k |!k!#!k| 
for |!k! " H  with #!k|!k! = 1, and %k  ) 0 with ' %k  = 1.  



 Density Matrices

The matrix & = ' %k |!k!#!k| satisfies:

1. Positivity: % |"! " H

#"|&|"! = ' %k #"|!k!#!k|"! = ' %k |#"|!k!|2 ) 0

2. Normalization:

tr(&) = ' %k tr(|!k!#!k|) = ' %k #!k|!k! = ' %k  = 1

Definition: Such & " Lin(H ) is called density matrix. Write
Dens(H ) := {& " Lin(H ) | & ) 0, tr(&) = 1}

Theorem: & " Lin(H ) is a density matrix iff & = ' %k |!k!#!k| 
for |!k! " H  with #!k|!k! = 1, and %k  ) 0 with ' %k  = 1.  

Terminology: 
Such a “randomized state” is called mixed state. 
A “deterministic state”, given by |!! " H , is called pure. 
The corresponding density matrix is then 

& = |!!#!| .



 The Density-Matrix Formalism

Quantum system A:  Hilbert space H    (or HA &HB  etc.)

State of A:  density matrix &A " Dens(H )

(Unitary) operation:U " Uni(H ). Rule: maps &A to U&AU 
†

Measurement: {Mi}i "I  s.t. 'Mi†Mi = I . Rule: 
observe i with probability 

pi = tr(Mi†Mi &A) = tr(Mi&AMi†)
state collapses to &iA = Mi &AMi†/pi .

Born’s rule



 Example

Consider:  
“|0! with prob. 1/2, and |1! with prob. 1/2”

versus
“|+! with prob. 1/2, and |(! with prob. 1/2”.

The former is given by the density matrix

and the latter by
⇢ =

1

2
|0ih0|+ 1

2
|1ih1|

1

2
|+ih+|+ 1

2
|�ih�|

=
1

4
(|0i+|1i)(h0|+h1|) + 1

4
(|0i�|1i)(h0|�h1|) = &

=
1

2
I



 Uniqueness of Density-Matrix Representation

Theorem: If &,' " Dens(H ) are distinct, i.e. & * ', then there 
exists a measurement {Mi}i "I that “distinguishes” them: 

+i: tr(Mi†Mi &) * tr(Mi†Mi ')

Proof: Set Mi = |i!#i | , where 
{|i!} is an orthonormal eigenbasis of & ( '. 

Then
tr(Mi†Mi &) ( tr(Mi†Mi ') = tr(Mi†Mi (& ( ')) 

= tr(|i!#i |i!#i |(& ( '))
= #i |(& ( ')|i! = (i

which is non-zero for any eigenvalue (i * 0.

= tr(|i!#i |(& ( '))
= (i #i |i!



 Motivation 2: Subsystems

Consider: bipartite system AB. 
It’s (possibly mixed) state is given by &AB " Dens(HA &HB). 

Q: How to describe state of system B alone? 

A: By the reduced density matrix
&B = trA(&AB) " Dens(HB)

     where:

NB: In general, &B = trA(&AB) is not pure, even if &AB is. 

Definition. The partial trace trA  is the linear map  
trA: Lin(HA &HB) $ Lin(HB)

with the defining property that 
trA(|"!#!|&|#!#)|) = #!|"! |#!#)| . 



 An Equivalent Definition

Proposition: Partial trace trA is the unique linear map s.t. 
tr((I &L)R) = tr(L trA(R)) 

for all R " Lin(HA &HB) and L " Lin(HB). 

Proof: Consider R = |"!#!|&|#!#)|. Then
   tr(L trA(R)) = tr(L trA(|"!#!|&|#!#)|)) 
                    = #!|"! ･ tr(L|#!#)|) 

                    = tr(|"!#!|)･ tr(L|#!#)|)
                    = tr(|"!#!|&L|#!#)|) 
                    = tr((I &L)(|"!#!|&|#!#)|)) 
                    = tr((I &L)R) .

For a general R:

by linearity



 Justification for the Partial Trace

Say: state of AB is given by &AB " Dens(HA &HB). 

Want: measure B (alone) using measurement {Mi}i "I . 

By applying Born’s rule to &AB, we get

               pi = tr((I &Mi)†(I &Mi) &AB)  
= tr((I &Mi†Mi) &AB)  
= tr(Mi†Mi trA(&AB))  

i.e., pi can be computed (using Born’s rule) from &B = trA(&AB). 



 Example

Consider: 

Corresponding density matrix: 

Applying trA :

=
1

2

�
|0ih0|⌦|0ih0|+ |0ih1|⌦|0ih1|+ |1ih0|⌦|1ih0|+ |1ih1|⌦|1ih1|

�
|'ABih'AB| =

1

2

�
|0i⌦|0i+ |1i⌦|1i

��
h0|⌦h0|+ h1|⌦h1|

�

|'ABi =
1p
2

�
|0i⌦|0i+ |1i⌦|1i

�

i.e., the state “|0! with prob. 1/2, and |1! with prob. 1/2”

trA
�
|'ABih'AB|

�
=

1

2

�
|0ih0|+ |1ih1|

�



 Acting on a Subsystem

Fact: For any &AB " Dens(HA &HB) and unitary U " Uni(HA): 

trA((U & I )&AB(U & I )†) = trA(&AB)

Proof: Consider |"!#!|&|#!#)| " Lin(HA &HB). Then

   trA((U & I )(|"!#!|&|#!#)|)(U & I )†) = trA(U|"!#!|U †
 &|#!#)|)

        = #!|U †U|"! |#!#)| = #!|"! |#!#)| = trA(|"!#!|&|#!#)|)

For a general &AB " Dens(HA &HB): by linearity

Thus: 
It is impossible to affect B by acting (unitarily) on A.



 Acting on a Subsystem - Continued

The same holds for measurements:  

State of B collapses to the state: 

“|0! with prob. 1/2, and |1! with prob. 1/2”

which equals                                                                .

Example: Measure system A of

in computational basis:  

|'ABi =
1p
2

�
|0i⌦|0i+ |1i⌦|1i

�

= trA
�
|'ABih'AB|

�
⇢B = 1

2 |0ih0|+
1
2 |1ih1|

Thus, still: 
It is impossible to affect B by acting on A.

nonsignaling principle



 Purification

A: Yes! 

Have seen, in general:
tracing out A of pure state |!AB! gives a mixed state &B .

Q: Can every mixed state be obtained this way?

Theorem. ! &B " Dens(HB) " |!AB! " HA &HB with HA =HB s.t. 
&B = trA(|!AB!#!AB|) .



Proof. Write &B = ' %k |!k!#!k|  (wlog: d , dim(HB) )
Let {|k!}k =1..d be an orthonormal basis of HA =HB , and set: 

Then: 

=
X

k

"k|'kih'k| = ⇢B

And so: 

 Purification

|'ABi =
X

k

p
"k |ki⌦|'ki

|'ABih'AB| =
X

k,`

p
"k"` |kih`|⌦|'kih'`|

trA
�
|'ABih'AB|

�
=

X

k,`

p
"k"` hk|`i|'kih'`|

Theorem. ! &B " Dens(HB) " |!AB! " HA &HB with HA =HB s.t. 
&B = trA(|!AB!#!AB|) .

k = 1

d



 Uniqueness of Purification

A: No! Applying unitary U to A doesn’t affect B:

trA((U & I )|!AB!#!AB|(U & I )†) = trA(|!AB!#!AB|) = &B .

Q: Is the purification unique? 

But: Unique up to a unitary U on A:

Theorem. If 
trA(|!AB!#!AB|) = trA(|"AB!#"AB|) 

then "U " Uni(HA) s.t.
|"AB! = (U & I )|!AB!. 

-

-



 Application: Impossibility of QBC



Important cryptographic primitive, used for
coin tossing
zero-knowledge proofs
multiparty computation
etc. 

(Bit) commitment scheme = digital analogue of: 
putting a message, or a bit, in a vault 
and revealing it later

 Commitment Schemes

Security properties: 
hiding: Bob cannot see message/bit “inside” commitment
binding: Alice cannot change her mind



 Impossibility

Classical (non-quantum) BC: 
scheme cannot be unconditionally hiding and binding

Indeed: Unconditionally binding
     # committed message is determined by Bob’s info
     # can in principle be computed
     # not unconditionally hiding

Reasoning doesn’t apply in quantum setting
After invention of QKD, strong believe in possibility of QBC
Several schemes proposed in late 80’s and early 90’s. 

1996/97: Mayers / Lo & Chau showed impossibility of QBC. 



 Impossibility Proof (Sketch)

Consider potential QBC scheme

Look at joint state after commit phase
                      |!0AB!  or  |!1AB! 
depending on whether honest Alice committed to 0 or 1 

By hiding property: 
             trA(|!0AB!#!0AB|) - trA(|!1AB!#!1AB|)

Thus, by Uhlmans Theorem:
        "U " Uni(HA): |!1AB! - (U & I )|!0AB!. 

So, dishonest Alice can (honestly) commit to, say, 0, but 
can still “change her mind” by applying U to her state. 

WLOG: may assume this state to be pure



 Back to theory...



 Classical versus Quantum Information

Consider: non-empty finite set X 

We understand x " X as classical information

Want: capture classical information using quantum formalism

For that, 
consider HX  = C|X|

fix orthonormal basis {|x!}x "X of HX

identify x " X with quantum state |x! " HX (resp. |x!#x|)

Holding classical x is equivalent to holding quantum state |x!: 
x can be recovered from |x! by measuring in basis {|x!}x "X. 



 Randomized Classical Information

Randomized classical info, given by random variable X, 
such that X=x  with prob. PX(x), is then identified with 

Finally, a hybrid of classical and quantum info, where
X=x  with prob. PX(x), 
state of A is given by &xA " Dens(HA)

is then identified with 

⇢

X

=
X

x

P

X

(x)|xihx| " Dens(HX)

⇢

XA =
X

x

P

X

(x)|xihx|⌦ ⇢

x

A " Dens(HX &HA)



 Example: Measurement

Let {Mx}x "X  be a measurement on a system A.  

Applied to a state & " Dens(HA) :
observe x with probability px = tr(Mx&Mx†)
state collapses to &x = Mx &Mx†/px . 

Captured by “hybrid state”: 

=
X

x

(|xi⌦M

x

) ⇢ (hx|⌦M

†
x

)

X

x

p

x

|xihx|⌦ ⇢

x =
X

x

|xihx|⌦M

x

⇢M

†
x

where |x!  &Mx : HA $ HX &HA , |!! � |x!  &Mx|!! and

   '(#x| &Mx†)(|x!  &Mx) = '#x|x! Mx†Mx  = 'Mx†Mx  = I



 CPTP Maps (or Quantum Channels)

Examples:

measuring a quantum state: & � '(|x!  &Mx)&(#x| &Mx†)
applying a unitary: & �U&U 

†

appending a (fixed) state |!!:
            & � & &|!!#!| = (I &|!! ) & (I &#!|)
“throwing away” part of a state:
          &AB � trA(&AB) = '(#i| & I) &AB (|i!  & I)

Definition. E: Lin(HA ) $ Lin(HA!) is called a CPTP map if

where Ei : HA $ HA! such that 'Ei†Ei = I .

or 
quantum channel   E(R) =

X

i

EiRE†
i



 CPTP Maps (or Quantum Channels)

Examples:

measuring a quantum state: & � '(|x!  &Mx)&(#x| &Mx†)
applying a unitary: & �U&U 

†

appending a (fixed) state |!!:
            & � & &|!!#!| = (I &|!! ) & (I &#!|)
“throwing away” part of a state:
          &AB � trA(&AB) = '(#i| & I) &AB (|i!  & I)

Definition. E: Lin(HA ) $ Lin(HA!) is called a CPTP map if

where Ei : HA $ HA! such that 'Ei†Ei = I .

or 
quantum channel   E(R) =

X

i

EiRE†
i

Thus: 
Every quantum operation is described by a CPTP map.

And: 
Every CPTP map describes a quantum operation. 



 Characterizations of CPTP maps

Theorem. Let E: Lin(HA ) $ Lin(HA!). The following are “⇔”

1. E is a CPTP map (i.e., E(R) = 'EiREi†). 

2. E is completely positive and trace preserving.

3. " HE and U " Uni(HA &HE &HA! ) s.t. ! & " Dens(HA) :  
E(&) = trAE(U (& &|0!#0|&|0!#0|)U †)

   where the |0!’s are default state vectors in HE and HA!. 

|0! |0!

U 

✗ ✗

=
E

Kraus 
representation

Steinspring representation



 Application: No-Cloning (Part II)



 No-Cloning

Proof:
Consider Steinspring representation of E and the 
states E(|!!#!|) and E(|"!#"|) before the partial trace:

U|!!|0!|0! and U|"!|0!|0!.

By uniqueness of purification, must be of the form
U|!!|0!|0! = |!!|!!|!.! and U|"!|0!|0! = |"!|"!|".!.

But then: #!|"! = #!|#0|#0|U †U|"!|0!|0! = #!|"!2#!.|".!
which implies that |#!|"!| = 1 or #!|"! = 0.

Theorem. Let E be a CPTP map, and |!!, |"!  state vectors. If
E(|!!#!|) = |!!#!|&|!!#!| and E(|"!#"|) = |"!#"|&|"!#"| .

then |#!|"!| = 1 (and thus |!!#!| = |"!#"|) or #!|"! = 0.



 No-Cloning

Proof:
Consider Steinspring representation of E and the 
states E(|!!#!|) and E(|"!#"|) before the partial trace:

U|!!|0!|0! and U|"!|0!|0!.

By uniqueness of purification, must be of the form
U|!!|0!|0! = |!!|!!|!.! and U|"!|0!|0! = |"!|"!|".!.

But then: #!|"! = #!|#0|#0|U †U|"!|0!|0! = #!|"!2#!.|".!
which implies that |#!|"!| = 1 or #!|"! = 0.

Theorem. Let E be a CPTP map, and |!!, |"!  state vectors. If
E(|!!#!|) = |!!#!|&|!!#!| and E(|"!#"|) = |"!#"|&|"!#"| .

then |#!|"!| = 1 (and thus |!!#!| = |"!#"|) or #!|"! = 0.

Using Uhlman’s Theorem: 
Also approximate cloning is impossible



 Back to theory: Distance between States



 Trace-Norm and -Distance

Definition. The trace norm of a Hermitian D " Lin(H ) is

||D|| := !|(i|

where (1,...,(d " R is the list of eigenvectors (w/ multiplicity).

Example: The (i‘s of & " Dens(H ) are ) 0 and add to 1. So: 

||&|| = 1 .

Definition. The trace distance of &, ' " Dens(H ) is

�(⇢,�) :=
1

2
k� � ⇢k .



 The Classical Case

If P and Q are distributions over X, and 

& = !P(x)|x!#x|   and   ' = !Q(x)|x!#x|

the corresponding density matrix representations, then 

& * ' = !(P(x) ( Q(x))|x!#x|
and thus

+(&,') =    !|P(x) ( Q(x)|

which is the statistical distance between P and Q, which 
captures exactly how well P and Q can be distinguished. 

1

2



 Trace Distance and Distinguishability

In particular: 
+(&,') bounds how well & & ' can be distinguished. 

Theorem. Let E be a CPTP map and &, ' " Dens(H ), then

+(E(&),E(')) , +(&,').

Proposition. ! &, ' " Dens(H ) " measurement M s.t.

+(M(&),M(')) = +(&,'). 

Thus: 
+(&,') captures exactly how well & & ' can be distinguished.



 Proof of Proposition

Proof: Let M be measurement given by {Mi = |i!#i |}, where 
{|i!} is an orthonormal eigenbasis of & ( '.

Then
2・+(M(&),M(')) = ! |tr(|i!#i |& ) ( tr(|i!#i |') |

= ! |#i |(&*')|i! |
= ! |(i #i |i! |
= ! |(i |
= 2・ +(&,')

= ! |tr(|i!#i |(& ( ')) |

Proposition. ! &, ' " Dens(H ) " measurement M s.t.

+(M(&),M(')) = +(&,'). 



 Almost done...



" mathematical rules for how the state behaves under:
unitary operation
measurement

 Take-Home Summary

Quantum state is described by 
a state vector for pure state, or 
a density matrix for mixed states. 

appending a state
“throwing away” part

Purification: every mixed state can be purified - uniquely. 

Classical info can be captured by quantum formalism. 

CPTP maps: captures all possible quantum operations

Trace distance: captures how similarly states behave


