Quantum Nonlocality

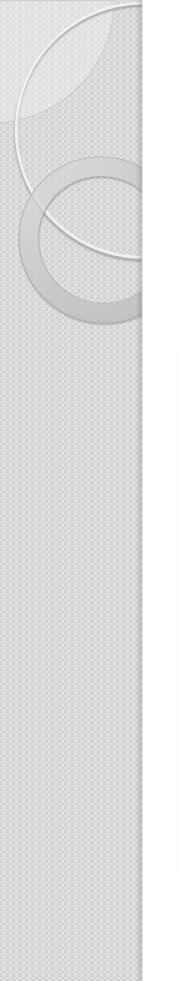
by Anne Broadbent Department of Mathematics and Statistics University of Ottawa

0

uOttawa

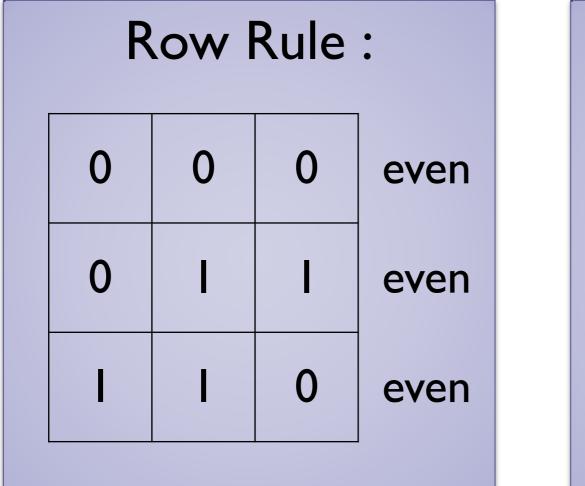
° THE MAGIC SQUARE GAME*

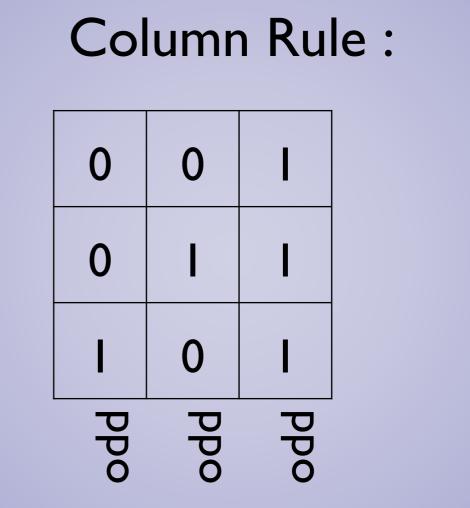
* P.K. Aravind (2004)



Magic Square

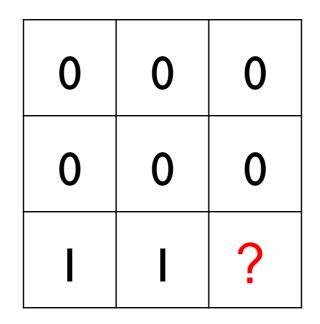
A magic square is a 3×3 matrix with elements in {0, 1} that satisfies:





Can a Magic Square exist?

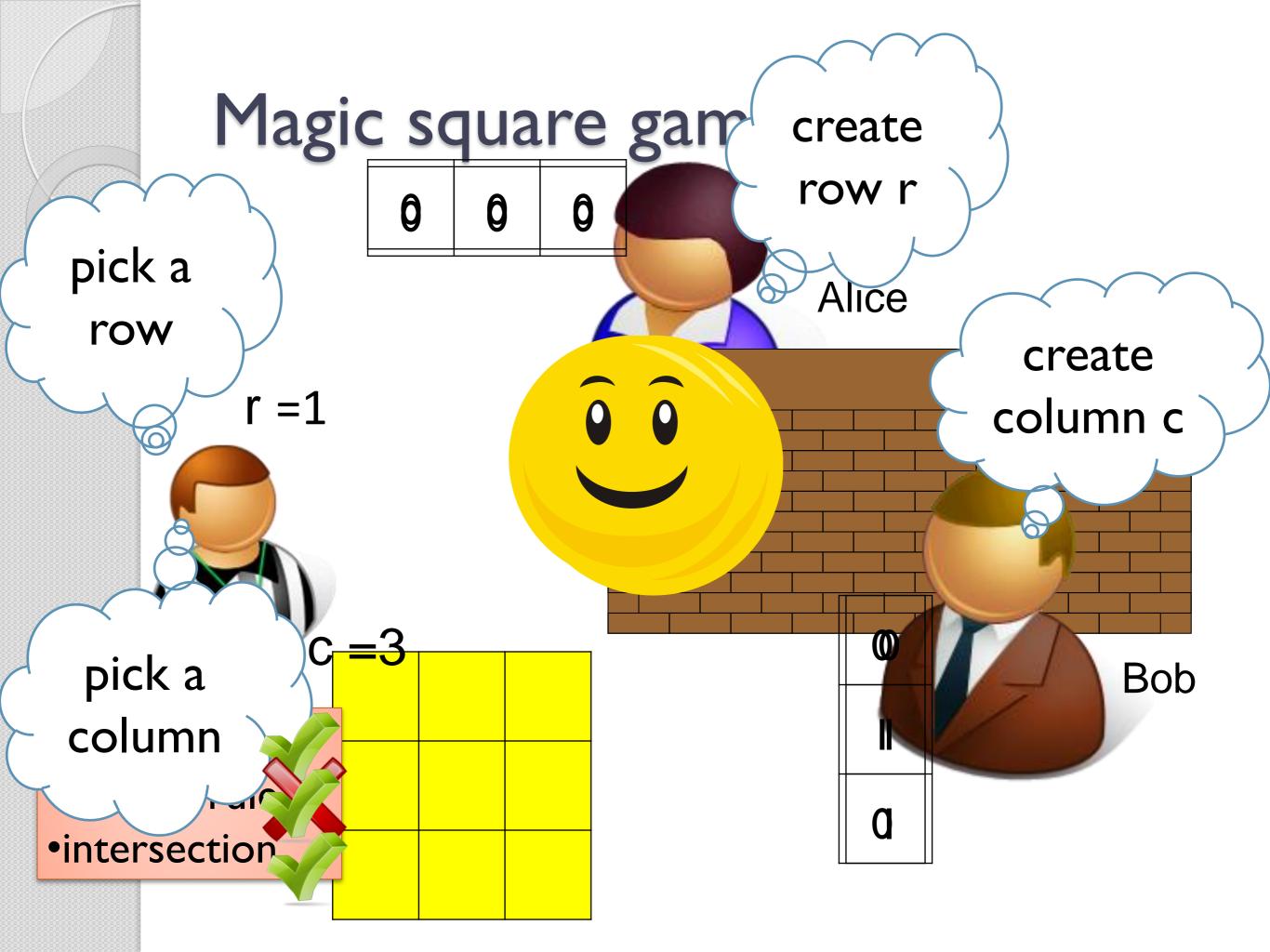
0	0	0
0	I	I
	0	?



а	b	С
d	е	f
g	h	i

a+b+c+d+e+f+g+h+i is even (row rule)

a+d+g+b+e+h+c+f+i is odd (column rule)



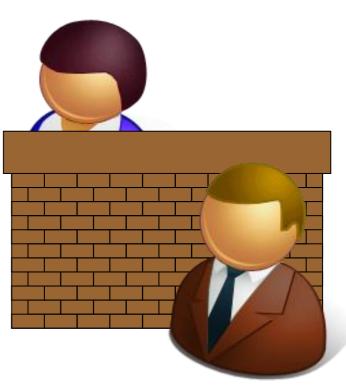
Success probability

•Let w(G) be the maximum success probability for Alice and Bob who play a game G, and where the questions are asked uniformly at random.

 Do Alice et Bob have a winning strategy for the Magic Square game? (w(G) = 1?)

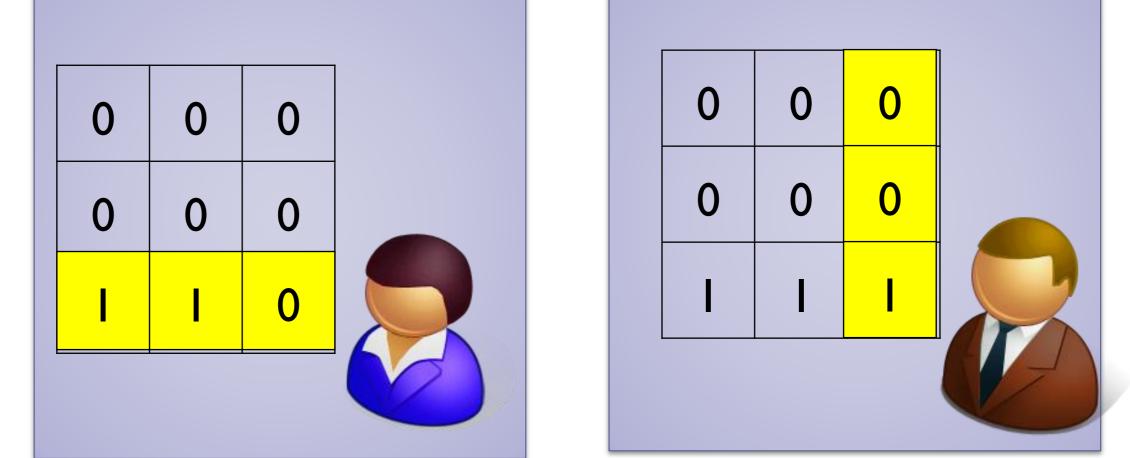
 A classical winning strategy corresponds to a magic square, hence w(G) ≠ 1.

row rulecolumn ruleintersection



Maximum success probability

•The best deterministic strategy wins on 8 out of the 9 possible questions:



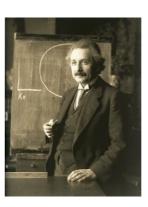
A probabilistic strategy is a probability distribution on deterministic strategies:
•w(G) = 8/9

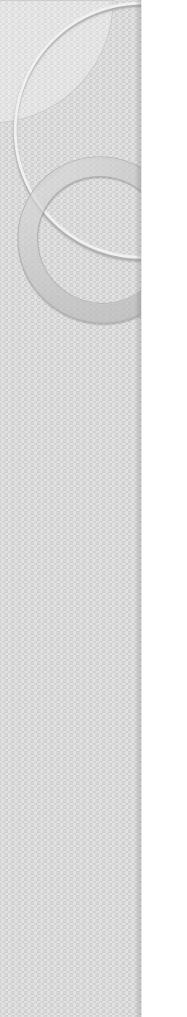
What if?

What would you think if you were the referee and you saw that Alice and Bob were always winning?

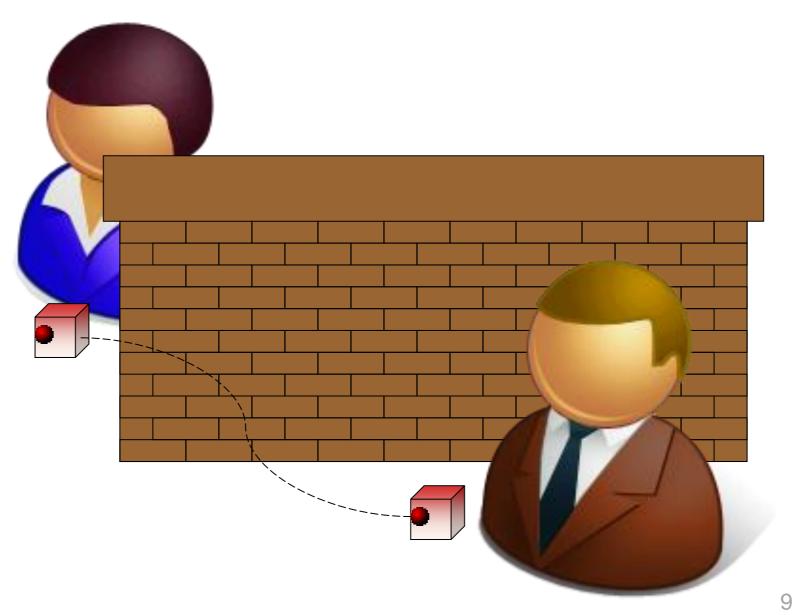
- •Are they cheating?
- Are they being really lucky?
 - $P(\text{win all } k \text{ repetition}) \le \frac{8}{9}^k$

•Do the laws of physics forbid this?





An explanation



Quantum Winning Strategy

Starting with $|\psi\rangle = \frac{1}{2} |0011\rangle - \frac{1}{2} |0110\rangle - \frac{1}{2} |1001\rangle + \frac{1}{2} |1100\rangle$ Alice applies transformation A_r and Bob applies transformation $B_{c:r}$

 $|\psi'\rangle = \frac{1}{\sqrt{8}}(|0000\rangle + |0001\rangle + i\,|0110\rangle + i\,|0111\rangle - i\,|1000\rangle - i\,|1001\rangle + i\,|1110\rangle - i\,|1111\rangle)$

Magic Square game

• if *r*=1 and *c*=2,

 $|\psi'\rangle = \frac{1}{\sqrt{8}}(|0000\rangle + |0001\rangle + i\,|0110\rangle + i\,|0111\rangle - i\,|1000\rangle - i\,|1001\rangle + i\,|1110\rangle - i\,|1111\rangle)$

• Alice and Bob measure to get:

Alice	Bob	Probability	Alice	Bob	Probability
00	00	I/8	000	001	I/8
00	01	I/8	000	010	I/8
01	10	I/8	011	10 <mark>0</mark>	I/8
01	П	I/8	011	111	I/8
10	00	I/8	101	00	I/8
10	01	I/8	101	010	I/8
П	10	I/8	110	10 <mark>0</mark>	I/8
П	П	I/8	110		I/8

They compute their third bit in order to satisfy the row or column rule, respectively.

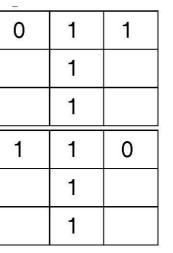
11

Magic Square game

So for r=1 and c=2, Alice and Bob appear to be sharing one of the following partial magic squares, with equal probability:

0	0	0	0	0	0
	0			1	
	1			0	
1	0	1	1	0	1
	0			1	
	1			0	

0	1	1
	0	
	0	
1	1	0
	0	
	1	



Review of Quantum Winning Strategy •Alice and Bob share the entangled state $|\psi\rangle = \frac{1}{2}|0011\rangle - \frac{1}{2}|0110\rangle - \frac{1}{2}|1001\rangle + \frac{1}{2}|1100\rangle$ •Alice applies transformation A_r and Bob

applies transformation B_c (depending on their input).

$$B_1 = \frac{1}{2} \begin{bmatrix} i & -i & 1 & 1 \\ -i & -i & 1 & -1 \\ 1 & 1 & -i & i \\ -i & i & 1 & 1 \end{bmatrix}, \quad B_2 = \frac{1}{2} \begin{bmatrix} -1 & i & 1 & i \\ 1 & i & 1 & -i \\ 1 & -i & 1 & i \\ -1 & -i & 1 & -i \end{bmatrix}, \quad B_3 = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 0 & 0 & 1 \\ -1 & 0 & 0 & 1 \\ 0 & 1 & 1 & 0 \\ 0 & 1 & -1 & 0 \end{bmatrix}$$

 Alice et Bob mesure their system and obtain 2 bits each.

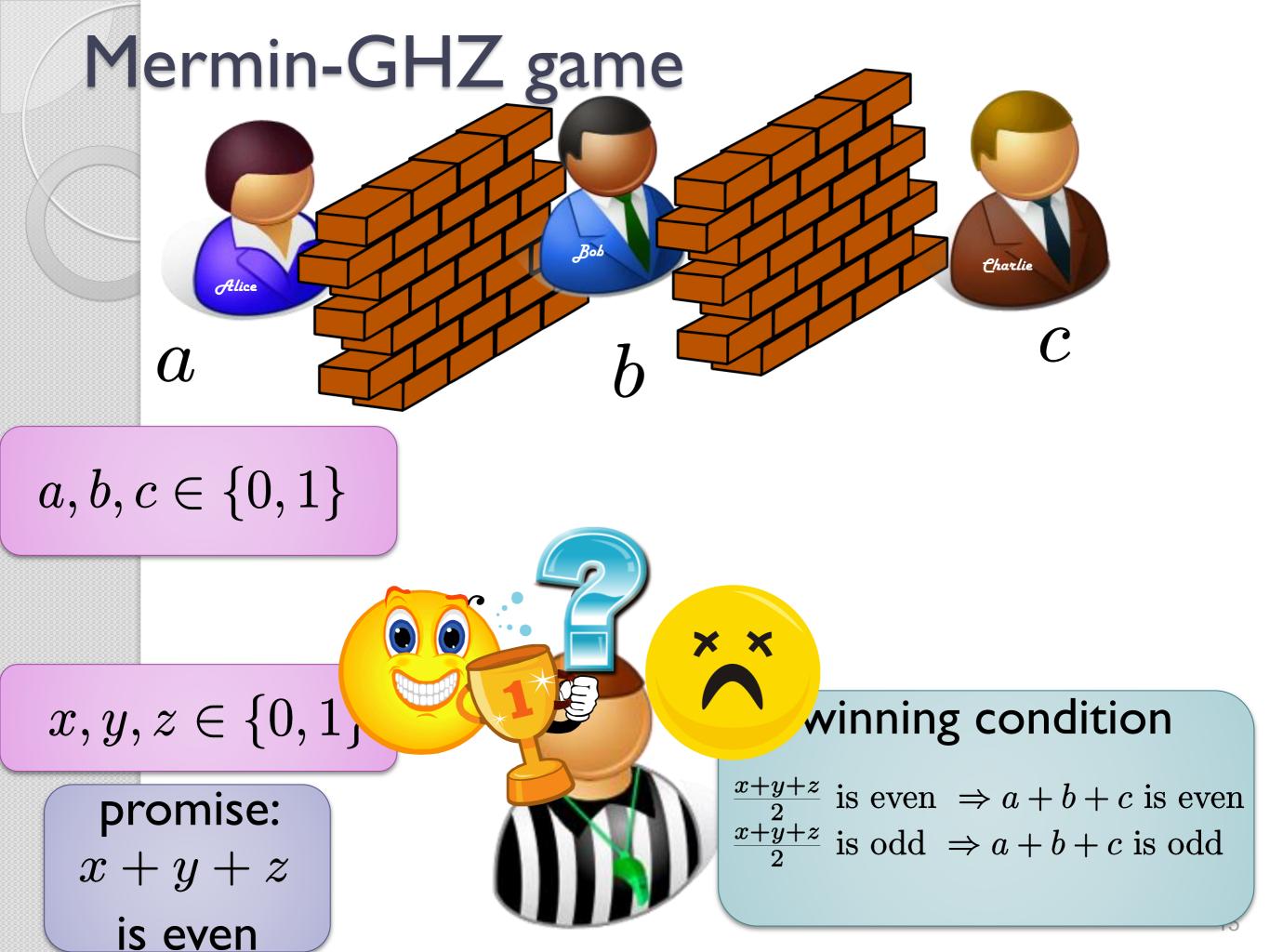
•The third bit is computed so that the row rule, or column rule (whichever is the case) is satisfied.

strategy

second game

• THE GHZ* GAME

*Greenberger-Horne-Zeilinger (1989), Mermin (1990)



A winning strategy?

winning condition $\frac{x+y+z}{2}$ is even $\Rightarrow a+b+c$ is even $\frac{x+\bar{y}+z}{2}$ is odd $\Rightarrow a+b+c$ is odd

best success probability: 3/4

Input (x,y,z)	Winning outputs (a,b,c)
(0,0,0) : even	(0,0,0),(0,1,1),(1,0,1),(1,1,0) : even
(0,1,1) :odd	(0,0,1),(0,1,0),(1,0,0),(1,1,1) : odd
(I,0,I) :odd	(0,0,1),(0,1,0),(1,0,0),(1,1,1) : odd
(I,I,0) :odd	(0,0,1),(0,1,0),(1,0,0),(1,1,1) : odd
general deterministic strategy: A: $0 \rightarrow a_0, 1 \rightarrow a_1$	a winning strategy must satisfy $a_0 + b_0 + c_0 = even$ $a_0 + b_1 + c_1 = odd$
B: $0 \rightarrow b_0, 1 \rightarrow b_1$ C: $0 \rightarrow c_0, 1 \rightarrow c_1$	CONTRACTORIO $a_1 + b_1 + c_0 = \text{odd}$

The player's strategy is to share the entangled state: $\frac{1}{\sqrt{2}}|0_A 0_B 0_C\rangle + \frac{1}{\sqrt{2}}|1_A 1_B 1_C\rangle$

 $\frac{1}{\sqrt{2}} |000\rangle + \frac{1}{\sqrt{2}} |111\rangle \neq (\alpha |0\rangle + \beta |1\rangle) \otimes (\alpha' |0\rangle + \beta' |1\rangle) \otimes (\alpha'' |0\rangle + \beta'' |1\rangle)$

Quantum winning strategy

Starting with $|\psi\rangle = \frac{1}{\sqrt{2}} |000\rangle + \frac{1}{\sqrt{2}} |111\rangle$, each player does the following:

I.lf the player's input is I, apply the unitary: transformation: $S = \begin{pmatrix} 1 & 0 \\ 0 & i \end{pmatrix}$

result: $\frac{1}{\sqrt{2}}|0_A 0_B 0_C\rangle + \frac{1}{\sqrt{2}}i^m|1_A 1_B 1_C\rangle$

2. Apply the Hadamard transform.

result: $\begin{cases} \frac{1}{2} |0_A 0_B 0_C \rangle + \frac{1}{2} |0_A 1_B 1_C \rangle + \frac{1}{2} |1_A 0_B 1_C \rangle + \frac{1}{2} |1_A 1_B 0_C \rangle, m/2 \text{ is even} \\ \frac{1}{2} |0_A 0_B 1_C \rangle + \frac{1}{2} |0_A 1_B 0_C \rangle + \frac{1}{2} |1_A 0_B 0_C \rangle + \frac{1}{2} |1_A 1_B 1_C \rangle, m/2 \text{ is odd} \end{cases}$

3. Measure, and output the result to the referee.

winning condition

$$\frac{x+y+z}{2} \text{ is even } \Rightarrow a+b+c \text{ is even}$$
$$\frac{x+y+z}{2} \text{ is odd } \Rightarrow a+b+c \text{ is odd}$$

- Pseudotelepathy
 Any classical winning strategy would require communication
 - Quantum winning strategy achieved without communication
- Called pseudotelepathy or nonlocal games

Bell's Theorem (1964): "The predictions of quantum mechanics are incompatible with any local physical theory"

Local theory: $p(ab \mid xy, \lambda) = p(a \mid x, \lambda)p(b \mid y, \lambda)$