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Fuzzing Low-Level Code

Mathias Payer <mathias.payer@epfl.ch> 
https://hexhive.github.io

https://hexhive.github.io/
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HexHive is hiring!



3

Challenge: vulnerabilities everywhere
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Challenge: software complexity

Google Chrome: 76 MLoC
Gnome:   9 MLoC
Xorg:                    1 MLoC
glibc:   2 MLoC
Linux kernel: 17 MLoC

Margaret Hamilton 
with code for Apollo 
Guidance Computer 
(NASA, ‘69)

Brian Kernighan holding 
Lion’s commentary on 
BSD 6 (Bell Labs, ‘77)

Chrome and OS
~100 mLoC,
27 lines/page,
0.1mm/page ≈ 370m
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Defense: Testing OR Mitigating?

MitigationsSoftware Testing
                 C/C++ 
void log(int a) {
  printf("A: %d", a);
}

void vuln(char *str) {
  char *buf[4];
  void (*fun)(int) = &log;
  strcpy(buf, str);

  fun(15);
}

CHECK(fun, tgtSet);

vuln("AAA");

vuln("ABC");

vuln("AAAABBBB");

strcpy_chk(buf, 4, str);
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Status of deployed defenses

● Data Execution Prevention (DEP)
● Address Space Layout 

Randomization (ASLR)
● Stack canaries
● Safe exception handlers
● Control-Flow Integrity (CFI):

Guard indirect control-flow

Memory

text

data

stack

0x400      R-X

0x800      RWX

0xfff      RWX

0x400      R-X

0x800      RW-

0xfff      RW-

0x4??      R-X

0x8??      RW-

0xf??      RW-
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Assessing exploitability
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Which crash to focus on first?



9

Residual Attack Surface Probing

● State-of-the-art mitigations complicate attacks
– Mitigations have limitations but these are hard to 

assess and explore systematically (and globally)

● Let’s infer the Residual Attack Surface
– Given a crash/bug what can an adversary still do?

– Residual attack surface depends on program, 
environment, and input

Block Oriented Programming: Automating Data-Only Attacks
Kyriakos Ispoglou, Bader AlBassam, Trent Jaeger, and Mathias Payer.
In CCS'18: ACM Conference on Computer and Communication Security, 2018
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Approach in a nutshell

● Given: crash that results in arbitrary write
● Assume: mitigations make exploitation hard

● Perform Code Reuse using Data-Only Attack
– Leverage memory corruption to corrupt state

– Build Turing-complete payloads as execution traces

– Express execution traces as memory writes
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BOP Gadget: basic block sequence

● Functional: 
compute (rax = 7)

● Dispatcher: 
connect 
functional blocks

● Clobbering: 
destroy context

rax = 7

rcx = 5 inc rax



Stitching 
BOP gadgets

Searching for 
dispatcher blocks

Selecting 
functional blocks

SPL
payload
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SPL payload

● Payload language
● Subset of C
● Library Calls
● Abstract registers 

as volatile vars

void payload() {
  string prog = "/bin/sh\0";
  int64* argv = {&prog, 0x0}; 

  __r0 = &prog;
  __r1 = &argv;
  __r2 = 0;

  execve(__r0, __r1, __r2);
}



Stitching 
BOP gadgets

Searching for 
dispatcher blocks

Selecting 
functional blocks

SPL
payload
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Functional block selection

● Find set of candidate blocks for SPL statement
● Candidate blocks “could be” functional blocks 

as the execute the correct computation

● What about other side effects? What about 
chaining functional blocks?



Functional block selection (example)

__r0 = 10;
__r1 = 20;

rax = 10

rdi = 10

rax = 20

rcx = 10

raxr0

rcx

rdi

r1

rcx = 30



Functional block selection (example)

__r0 = 10;
__r1 = 20;

rax = 10

rdi = 10

rax = 20

rcx = 10

raxr0

rcx

rdi

r1

rcx = 30

Clobbering

Dispatcher

Functional

Functional

Clobbering

Clobbering

Functional

Functional

Dispatcher

Dispatcher



Stitching 
BOP gadgets

Searching for 
dispatcher blocks

Selecting 
functional blocks

SPL
payload
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Dispatcher block search

● BOP gadgets are brittle
● Side-effects make gadgets hard to chain

– Stitching gadgets is NP-hard

– There is no approximative solution

● Our approach: back tracking and heuristics



BOP gadgets are brittle

Statement #1

Statement #2

Statement #3



Delta Graph: keeping track of blocks

● Squares: 
Functional blocks 
for SPL statements

● Nodes: Functional 
blocks

● Edges: Length of 
dispatcher chain

● Goal: Select one 
“node” from each 
layer (yellow)



Stitching 
BOP gadgets

Searching for 
dispatcher blocks

Selecting 
functional blocks

SPL
payload
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Stitching BOP gadgets

● Each path is a candidate exploit
● Check and validate constraints along paths

– Goal: find a valid configuration

– Constraints come from environment, SPL program, 
or execution context

– Verify using concolic execution & constraint solving



Payload synthesis

   ✓ The SPL payload was successfully executed on the target binary

✗1  Not enough candidate blocks

✗2  No valid register/variable mappings

✗3  No valid paths between functional blocks 

✗4  Un-satisfiable constraints or solver timeout 

 Success Rate: 81%



Case study: inf loop on nginx

ngx_signal_handler()
41C765: signals.signo == 0
40E10F: ngx_time_lock != 0
41C7B1: ngx_process 3 > 1
41C9AC: ngx_cycle = $alloc_1
        $alloc_1 > log = $alloc_2
        $alloc_2 > log_level <= 5
41CA18: signo == 17
41CA4B: waitpid() return value != {0, 1}
41cA50: ngx_last_process == 0
41CB50: *($stack 0x03C) & 0x7F != 0
41CB5B: $alloc_2 > log_level <= 1
41CBE6: *($stack 0x03C + 1) != 2
41CC48: ngx_accept_mutex_ptr == 0
41CC5F: ngx_cycle> shared_memory.part.elts = 0
        __r0 = r14 = 0
41CC79: ngx_cycle > shared_memory.part.nelts <= 0
41CC7F: ngx_cycle > shared_memory.part.next == 0



Case study: if-else in nginx



BOP summary

● Block Oriented Programming
– Automates Data-Only attacks

– SPL: A language to express exploit payloads

– Concolic execution algorithm stitches BOP gadgets

● We build exploits for 81% of the case studies
● Open source implementation (~14,000 LoC)

Block Oriented Programming: Automating Data-Only Attacks
Kyriakos Ispoglou, Bader AlBassam, Trent Jaeger, and Mathias Payer.
In CCS'18: ACM Conference on Computer and Communication Security, 2018
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Software testing: discover bugs

security



  

Fuzz testing

● A random testing technique that mutates input 
to improve test coverage

● State-of-art fuzzers use coverage as feedback 
to evolutionarily mutate the input

Input Generation

Tests
Debug Exe

Coverage

Crashes



Academic fuzzing research
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“Fake” USB
Device

USBFuzz: explore peripheral space

Kernel

Driver

Virtual Environment



USBFuzz Evaluation

● ~60 new bugs discovered in recent kernels
● 36 memory bugs (UaF / BoF)
● ~12 bugs fixed (with 9 CVEs)
● Bug reporting in progress



Security testing hard-to-reach code

● Fuzzing is an effective way to automatically test 
programs for security violations (crashes)
– Key idea: optimize for throughput

– Coverage guides mutation

● BOP: assess exploitability
● USBFuzz: fuzz peripherals

https://hexhive.epfl.ch
https://github.com/HexHive

https://github.com/HexHive


Vulnerable apps

Program Vulnerability Nodes RegSetRegMod MemRd MemWr Call Cond Total
ProFTPd CVE-2006-5815 27,087 40,143 387 1,592 199 77 3,029 45,427
nginx CVE-2013-2028 24,169 31,497 1,168 1,522 279 35 3375 37,876
sudo CVE-2012-0809 3,399 5,162 26 157 18 45 307 5715
orzhttpd BID 41956 1,345 2,317 9 39 8 11 89 2473
wuftpd CVE-2000-0573 8,899 14,101 62 274 11 94 921 15,463
nullhttpd CVE-2002-1496 1,488 2,327 77 54 7 19 125 2,609
opensshd CVE-2001-0144 6,688 8,800 98 214 19 63 558 9,752
wireshark CVE-2014-2299 74,186 124,053 639 1,736 193 100 4555 131276
apache CVE-2006-3747 18,790 33,615 212 490 66 127 1,768 36,278
smbclient CVE-2009-1886 166,081 265,980 1,481 6,791 951 119 28,705 304,027

RegSet:
RegMod:
MemRd:
MemWr:
Call:
Cond:
Total:

Register Assignment Gadgets
Register Modification Gadgets
Memory Read Gadgets
Memory Write Gadgets
Function/System Call Gadgets
Conditional Statement Gadgets
Total number of Functional Gadgets



SPL payloads

Payload Description
regset4 Initialize 4 registers with arbitrary values

regref4 Initialize 4 registers with pointers to arbitrary memory

regset5 Initialize 5 registers with arbitrary values

regref5 Initialize 5 registers with pointers to arbitrary memory

regmod Initialize a register with an arbitrary value and modify it

memrd Read from arbitrary memory 
memwr Write to arbitrary memory
print Display a message to stdout using write
execve Spawn a shell through execve
abloop Perform an arbitrarily long bounded loop utilizing regmod 
infloop Perform an infinite loop that sets a register in its body
ifelse An if-else condition based on a register comparison
loop Conditional loop with register modification
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