
1

Fuzzing Low-Level Code

Mathias Payer <mathias.payer@epfl.ch>
https://hexhive.github.io

https://hexhive.github.io/

2

HexHive is hiring!

3

Challenge: vulnerabilities everywhere

4

Challenge: software complexity

Google Chrome: 76 MLoC
Gnome: 9 MLoC
Xorg: 1 MLoC
glibc: 2 MLoC
Linux kernel: 17 MLoC

Margaret Hamilton
with code for Apollo
Guidance Computer
(NASA, ‘69)

Brian Kernighan holding
Lion’s commentary on
BSD 6 (Bell Labs, ‘77)

Chrome and OS
~100 mLoC,
27 lines/page,
0.1mm/page ≈ 370m

5

Defense: Testing OR Mitigating?

MitigationsSoftware Testing
 C/C++
void log(int a) {
 printf("A: %d", a);
}

void vuln(char *str) {
 char *buf[4];
 void (*fun)(int) = &log;
 strcpy(buf, str);

 fun(15);
}

CHECK(fun, tgtSet);

vuln("AAA");

vuln("ABC");

vuln("AAAABBBB");

strcpy_chk(buf, 4, str);

6

Status of deployed defenses

● Data Execution Prevention (DEP)
● Address Space Layout

Randomization (ASLR)
● Stack canaries
● Safe exception handlers
● Control-Flow Integrity (CFI):

Guard indirect control-flow

Memory

text

data

stack

0x400 R-X

0x800 RWX

0xfff RWX

0x400 R-X

0x800 RW-

0xfff RW-

0x4?? R-X

0x8?? RW-

0xf?? RW-

7

Assessing exploitability

8

Which crash to focus on first?

9

Residual Attack Surface Probing

● State-of-the-art mitigations complicate attacks
– Mitigations have limitations but these are hard to

assess and explore systematically (and globally)

● Let’s infer the Residual Attack Surface
– Given a crash/bug what can an adversary still do?

– Residual attack surface depends on program,
environment, and input

Block Oriented Programming: Automating Data-Only Attacks
Kyriakos Ispoglou, Bader AlBassam, Trent Jaeger, and Mathias Payer.
In CCS'18: ACM Conference on Computer and Communication Security, 2018

10

Approach in a nutshell

● Given: crash that results in arbitrary write
● Assume: mitigations make exploitation hard

● Perform Code Reuse using Data-Only Attack
– Leverage memory corruption to corrupt state

– Build Turing-complete payloads as execution traces

– Express execution traces as memory writes

11

BOP Gadget: basic block sequence

● Functional:
compute (rax = 7)

● Dispatcher:
connect
functional blocks

● Clobbering:
destroy context

rax = 7

rcx = 5 inc rax

Stitching
BOP gadgets

Searching for
dispatcher blocks

Selecting
functional blocks

SPL
payload

12

SPL payload

● Payload language
● Subset of C
● Library Calls
● Abstract registers

as volatile vars

void payload() {
 string prog = "/bin/sh\0";
 int64* argv = {&prog, 0x0};

 __r0 = &prog;
 __r1 = &argv;
 __r2 = 0;

 execve(__r0, __r1, __r2);
}

Stitching
BOP gadgets

Searching for
dispatcher blocks

Selecting
functional blocks

SPL
payload

14

Functional block selection

● Find set of candidate blocks for SPL statement
● Candidate blocks “could be” functional blocks

as the execute the correct computation

● What about other side effects? What about
chaining functional blocks?

Functional block selection (example)

__r0 = 10;
__r1 = 20;

rax = 10

rdi = 10

rax = 20

rcx = 10

raxr0

rcx

rdi

r1

rcx = 30

Functional block selection (example)

__r0 = 10;
__r1 = 20;

rax = 10

rdi = 10

rax = 20

rcx = 10

raxr0

rcx

rdi

r1

rcx = 30

Clobbering

Dispatcher

Functional

Functional

Clobbering

Clobbering

Functional

Functional

Dispatcher

Dispatcher

Stitching
BOP gadgets

Searching for
dispatcher blocks

Selecting
functional blocks

SPL
payload

18

Dispatcher block search

● BOP gadgets are brittle
● Side-effects make gadgets hard to chain

– Stitching gadgets is NP-hard

– There is no approximative solution

● Our approach: back tracking and heuristics

BOP gadgets are brittle

Statement #1

Statement #2

Statement #3

Delta Graph: keeping track of blocks

● Squares:
Functional blocks
for SPL statements

● Nodes: Functional
blocks

● Edges: Length of
dispatcher chain

● Goal: Select one
“node” from each
layer (yellow)

Stitching
BOP gadgets

Searching for
dispatcher blocks

Selecting
functional blocks

SPL
payload

22

Stitching BOP gadgets

● Each path is a candidate exploit
● Check and validate constraints along paths

– Goal: find a valid configuration

– Constraints come from environment, SPL program,
or execution context

– Verify using concolic execution & constraint solving

Payload synthesis

 ✓ The SPL payload was successfully executed on the target binary

✗1 Not enough candidate blocks

✗2 No valid register/variable mappings

✗3 No valid paths between functional blocks

✗4 Un-satisfiable constraints or solver timeout

 Success Rate: 81%

Case study: inf loop on nginx

ngx_signal_handler()
41C765: signals.signo == 0
40E10F: ngx_time_lock != 0
41C7B1: ngx_process 3 > 1
41C9AC: ngx_cycle = $alloc_1
 $alloc_1 > log = $alloc_2
 $alloc_2 > log_level <= 5
41CA18: signo == 17
41CA4B: waitpid() return value != {0, 1}
41cA50: ngx_last_process == 0
41CB50: *($stack 0x03C) & 0x7F != 0
41CB5B: $alloc_2 > log_level <= 1
41CBE6: *($stack 0x03C + 1) != 2
41CC48: ngx_accept_mutex_ptr == 0
41CC5F: ngx_cycle> shared_memory.part.elts = 0
 __r0 = r14 = 0
41CC79: ngx_cycle > shared_memory.part.nelts <= 0
41CC7F: ngx_cycle > shared_memory.part.next == 0

Case study: if-else in nginx

BOP summary

● Block Oriented Programming
– Automates Data-Only attacks

– SPL: A language to express exploit payloads

– Concolic execution algorithm stitches BOP gadgets

● We build exploits for 81% of the case studies
● Open source implementation (~14,000 LoC)

Block Oriented Programming: Automating Data-Only Attacks
Kyriakos Ispoglou, Bader AlBassam, Trent Jaeger, and Mathias Payer.
In CCS'18: ACM Conference on Computer and Communication Security, 2018

28

Software testing: discover bugs

security

Fuzz testing

● A random testing technique that mutates input
to improve test coverage

● State-of-art fuzzers use coverage as feedback
to evolutionarily mutate the input

Input Generation

Tests
Debug Exe

Coverage

Crashes

Academic fuzzing research

31

“Fake” USB
Device

USBFuzz: explore peripheral space

Kernel

Driver

Virtual Environment

USBFuzz Evaluation

● ~60 new bugs discovered in recent kernels
● 36 memory bugs (UaF / BoF)
● ~12 bugs fixed (with 9 CVEs)
● Bug reporting in progress

Security testing hard-to-reach code

● Fuzzing is an effective way to automatically test
programs for security violations (crashes)
– Key idea: optimize for throughput

– Coverage guides mutation

● BOP: assess exploitability
● USBFuzz: fuzz peripherals

https://hexhive.epfl.ch
https://github.com/HexHive

https://github.com/HexHive

Vulnerable apps

Program Vulnerability Nodes RegSetRegMod MemRd MemWr Call Cond Total
ProFTPd CVE-2006-5815 27,087 40,143 387 1,592 199 77 3,029 45,427
nginx CVE-2013-2028 24,169 31,497 1,168 1,522 279 35 3375 37,876
sudo CVE-2012-0809 3,399 5,162 26 157 18 45 307 5715
orzhttpd BID 41956 1,345 2,317 9 39 8 11 89 2473
wuftpd CVE-2000-0573 8,899 14,101 62 274 11 94 921 15,463
nullhttpd CVE-2002-1496 1,488 2,327 77 54 7 19 125 2,609
opensshd CVE-2001-0144 6,688 8,800 98 214 19 63 558 9,752
wireshark CVE-2014-2299 74,186 124,053 639 1,736 193 100 4555 131276
apache CVE-2006-3747 18,790 33,615 212 490 66 127 1,768 36,278
smbclient CVE-2009-1886 166,081 265,980 1,481 6,791 951 119 28,705 304,027

RegSet:
RegMod:
MemRd:
MemWr:
Call:
Cond:
Total:

Register Assignment Gadgets
Register Modification Gadgets
Memory Read Gadgets
Memory Write Gadgets
Function/System Call Gadgets
Conditional Statement Gadgets
Total number of Functional Gadgets

SPL payloads

Payload Description
regset4 Initialize 4 registers with arbitrary values

regref4 Initialize 4 registers with pointers to arbitrary memory

regset5 Initialize 5 registers with arbitrary values

regref5 Initialize 5 registers with pointers to arbitrary memory

regmod Initialize a register with an arbitrary value and modify it

memrd Read from arbitrary memory
memwr Write to arbitrary memory
print Display a message to stdout using write
execve Spawn a shell through execve
abloop Perform an arbitrarily long bounded loop utilizing regmod
infloop Perform an infinite loop that sets a register in its body
ifelse An if-else condition based on a register comparison
loop Conditional loop with register modification

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35

