Fuzzing Low-Level Code

h.

vt

Mathias Payer <mathias.payer@epfl.ch>
https://hexhive.github.io

https://hexhive.github.io/

HexHive Is hiring!

European Research Council

Established by the European Commission

wwm,
_mm
=
=+

=
=
-
=
(7
o
=
E
=
o
o
i
o
=
@
=
o
o
(-
i
o=
]
=

Challenge: vulnerabllities everywhere

The Marris Internet Worm
source code

P g iy Mbasrons

Payment will be raised on
5116/2017 00:47:55

Time Left

Your files will be lost on

5/20/2017 00:47:55

Time Left

About bitcoin

How to buy bi

Contact Us

Wana DecryptOr 2.0
OQoops, your files have been encrypted!

'What Happened to My Computer?

'Your important files are encrypted.

Many of your documents, photos, videos, databases and other files are no longer
accessible because they have been encrypted. Maybe you are busy looking for a way to
recover your files, but do not waste your time. Nobody can recover your files without
our decryption service.

Can I Recover My Files?

Sure. We guarantee that you can recover all your files safely and easily. But you have
not so enough time.

You can decrypt some of your files for free. Try now by clicking <Decrypt>.

But if you want to decrypt all your files, you need to pay

'You only have 3 days to submit the payment. After that the price will be doubled.

Also, if you don't pay in 7 days, you won't be able to recover your files forever.

[We will have free events for users who are so poor that they couldn’t pay in 6 months.

How Do I Pay?

Payment is accepted in Bitcoin only. For more information, clic! bout bitcoin>.
Please check the current price of oin and buy some bitcoins. For more information,
click <How to buy bitcoins>.

And send the correct amount to the address specified in this window.

After your payment, click <Check Payment>. Best time to check: 9:00am - 11:00am

. . Send $300 worth of bitcoin to this address:
bitcoin _
ACCEPTED HERE | 12t9YDP, yMg: P J) |

BT TR

et

Challenge: software complexity

Google Chrome: 76 MLoC S&onc™

Gnome: 9 MLoC g?llrir?g%gzgee; 370m
Xorg: 1 MLoC
glibc: 2 MLoC

Linux kernel: 17 MLoC

‘ Margaret Hamilton

: with code for Apollo
a4 L. Guidance Computer
= M) (NASA, ‘69)

%/ 9 Brian Kernighan holding
(& gy LiON's commentary on
».? BSD 6 (Bell Labs, ‘77)
-

Defense: Testing OR Mitigating?

VS

Software Testing Mitigations
C/C++
void log(int a) {
. printf();

void vuln(char *str) {
char *buf[4];

void (*fun)(int) = &log;
strcpy(buf, str);

sy, e SEO]

}

Status of deployed defenses

« Data Execution Prevention (DEP) Memory

« Address Space Layout 0x460
Randomization (ASLR) text

e Stack canari
€S Ox866 RWX

« Safe exception handlers data. gy

* Control-Flow Integrity (CFI):
Guard indirect control-flow

OxfTT o RWX

stack

american fuzzy lop 2.32b (test decode bmp)

process timing overall results
run time : O days, 1 hrs, 53 min, 36 sec cycles done : 2
lLast new path : 0 days, 0 hrs, 0 min, 35 sec total paths : 939
lLast uniq crash : 0 days, © hrs, 6 min, 18 sec uniq crashes : 124
lLast unigq hang : 0 days, 0 hrs, 16 min, 41 sec uniq hangs : 128
cycle progress map coverage
now processing : 120% (12.78%) map density : 3.23% J 1.45%
paths timed out : O (0.00%) count coverage : 4.75 bits/tuple
stage progress findings 1n depth
now trying : bitflip 1/1 favored paths : 126 (13.42%)
stage execs : 923/5152 (17.92%) new edges on : 185 (19.70%)
total execs : 11.2M total crashes : 7089 (124 unique)
exec speed : 3487/sec total hangs : 68.3k (128 unique)
fuzzing Etrategy yields path geumetry
bit flips : 291/1.27M, S6/1.26M, 22/1.26M levels 11
byte flips : 77158k, 16/29.8k, 23/30.3k pending : 644
arithmetics : 100/1.66M, 8/1.58M, 99/1.18M pend fav : 0
known ints : 4/93.8k, 227395k, 61/768k own finds : 938
dictionary : 0/0, 0/0, 0/0 imported : n/a
havoc : 353/1.43M, 0/0 stability : 100.00%
trim : 19.01%/76.7k, 80.864%

[cpuopD: 50%]

Residual Attack Surface Probing

» State-of-the-art mitigations complicate attacks

- Mitigations have limitations but these are hard to
assess and explore systematically (and globally)

e | et's Infer the Residual Attack Surface

- Given a crash/bug what can an adversary still do?

- Residual attack surface depends on program,
environment, and input

Block Oriented Programming: Automating Data-Only Attacks
Kyriakos Ispoglou, Bader AlBassam, Trent Jaeger, and Mathias Payer.
In CCS'18: ACM Conference on Computer and Communication Security, 2018

Approach In a nutshell

* Given: crash that results in arbitrary write

* Assume: mitigations make exploitation hard

* Perform Code Reuse using Data-Only Attack

- Leverage memory corruption to corrupt state
— Build Turing-complete payloads as execution traces
- EXpress execution traces as memory writes

10

BOP Gadget: basic block sequence

.
* Functional: |
compute (rax = 7) Y
* Dispatcher: m inc rax
e
_

connect
functional blocks

* Clobbering:
destroy context

v

- 11

SPL — Selecting
payload functional blocks

N\

Stitching Searching for
BOP gadgets || dispatcher blocks

SPL payload

* Payload language
» Subset of C
 Library Calls

» Abstract registers
as volatile vars

void payload() {
string prog
int64* argv

"/bin/sh\0";
{&prog, Ox0};

__ro = &prog;
__rl = &argyv;
_r2 = 0;

execve(__r0, _ri1, _ r2);

}

SPL — Selecting
payload functional blocks

N\

Stitching Searching for
BOP gadgets || dispatcher blocks

Functional block selection

 Find set of candidate blocks for SPL statement

» Candidate blocks “could be” functional blocks
as the execute the correct computation

 \What about other side effects? What about
chaining functional blocks?

Functional block selection (example)

—re . 10’ rax = 10
rli = 20;

rdi = 10

rax = 20

SN O P

@ rcx = 30

Functional block selection (example)

_rO = 10’ rax = 10
_rl = 20;

rdi = 10

rax = 20

@ @ rcx = 10

@ rcx = 30

Dispatcher

Functional

Functional

Functional

Functional

Dispatcher

Dispatcher

SPL — Selecting
payload functional blocks

N\

Stitching Searching for
BOP gadgets | dispatcher blocks

Dispatcher block search

« BOP gadgets are brittle

» Side-effects make gadgets hard to chain

— Stitching gadgets is NP-hard
- There Is no approximative solution

* Our approach: back tracking and heuristics

BOP gadgets are brittle

— B
- e
m B

Delta Graph: keeping track of blocks

e Squares:
Functional blocks
for SPL statements

e Nodes: Functional

blocks

 Edges: Length of
dispatcher chain

e Goal: Select one

“node” from each
layer (yellow)

SPL — Selecting
payload functional blocks

N\

Stitching Searching for
BOP gadgets | dispatcher blocks

Stitching BOP gadgets

 Each path is a candidate exploit

* Check and validate constraints along paths

- Goal: find a valid configuration

— Constraints come from environment, SPL program,
or execution context

- Verify using concolic execution & constraint solving

Payload synthesis

Program . . SPL payload .

regset4 | regref4 | regsets | regref5 | regmod | memrd | memwr | print | execve | abloop | infloop | ifelse loop
ProFTPd v v v v v/ v v v 32 Xi Vs |V w v v 3
nginx v/ v/ / v/ / v/ 7 / VARVITS AR /o128
sudo v v/ v/ v v/ v v v/ / X4 v/ 128+ X4 X4
orzhttpd v v v/ v v/ v v X4 X1 X4 v/ 128+ Xy X3
wuftdp v/ v/ / v/ / v v / X1 o128+ | /o128+ Xy X3
nullhttpd v v/ v/ v V4 v X3 X3 v o3 |V X4 X3
opensshd v v/ v/ v v/ v X4 X4 X4 /o512 | /o184 SO/ w
wireshark v v/ v/ v v/ v v v 4 X1 s+ | /7 v /8
apache v/ v/ v/ v/ v/ v v X4 X4 oo | V1284 v X4
smbclient v v/ v/ v v/ v v /1 X1 vV 1057 | v/ 128+ v v 256

v The SPL payload was successfully executed on the target binary

X

=

XZ
X3
X4

Not enough candidate blocks

No valid register/variable mappings

No valid paths between functional blocks
Un-satisfiable constraints or solver timeout

Success Rate: 81%

Case study: Inf loop on nginx

ngx_signal_handler ()

41C765:

40E10F:
41C7B1:
41C9AC.:

41CA18:
41CA4B:
41CcA50:
41CB50:
41CB5B:
41CBE6:
41CC48:
41CC5F:

41CC79:
41CC7F:

signals.signo
ngx_time_lock != 0

ngx_process 3 > 1

ngx_cycle = $alloc_1

$alloc_1 > log = $alloc_2
$alloc_2 > log_level <= 5

signo == 17

waitpid() return value != {0, 1}
ngx_last_proces
*($stack OxO3C) & Ox7F !'= 0

$alloc_2 > log_level <=1
*($stack OxO03C + 1) != 2
ngx_accept_mutex_ptr ==
ngx_cycle> shared_memory.part.elts =
_r0 =r14 =0

ngx_cycle > shared_memory.part.nelts
ngx_cycle > shared_memory.part.next

= 0]

Case study: if-else In nginx

Statement #0

7

3 \)36 40 4
D @D (D) G
INF

INF

11

Statement #

403d4b

8 10
INF INF

Statement 4

BOP summary

* Block Oriented Programming

- Automates Data-Only attacks
- SPL: A language to express exploit payloads
— Concolic execution algorithm stitches BOP gadgets

* We build exploits for 81% of the case studies
* Open source implementation (~14,000 LoC)

Block Oriented Programming: Automating Data-Only Attacks
Kyriakos Ispoglou, Bader AlBassam, Trent Jaeger, and Mathias Payer.
In CCS'18: ACM Conference on Computer and Communication Security, 2018

Software testing: discover bugs

Fuzz testing

* Arandom testing technique that mutates input
to Improve test coverage
-~

Coverage

i SR I RGN Crashes
. State of art fuzzers use coverage as feedback
to evolutionarily mutate the input

Academic fuzzing research

ALl ABOARD

THE
HYP€

ia b

USBFuzz: explore peripheral space

Virtual Environment

“Fake” USB
Device

Kernel

Driver '

USBFuzz Evaluation

 ~60 new bugs discovered in recent kernels
36 memory bugs (UaF / BoF)

* ~12 bugs fixed (with 9 CVES)

* Bug reporting In progress

Bug Info

double-free
NULL pointer dereference
Memory Bugs (36) general protection

slab-out-of-bounds access
user-after-free access
INFO
Unexpected state reached (17) WARNING
BUG

Security testing hard-to-reach code

 Fuzzing Is an effective way to automatically test
programs for security violations (crashes)

- Key idea: optimize for throughput licag,,
- Coverage guides mutation =
« BOP: assess exploitability At
: Vulnerabllnies
« USBFuzz: fuzz peripherals Comtrol: Fhw vvvvvv 3
SaI‘IITIZEI'S
pl‘OTECTIOI‘l

https://hexhive.epfl.ch
https://github.com/HexHive

IANTYOU

FOR THE IMPERIAI. GUARD
W<

"hexhive

https://github.com/HexHive

Vulnerable apps

Program Vulnerability
ProFTPd CVE-2006-5815

nginx CVE-2013-2028
sudo CVE-2012-0809
orzhttpd BID 41956

wuftpd CVE-2000-0573
nullhttpd CVE-2002-1496
opensshd CVE-2001-0144
wireshark CVE-2014-2299
apache CVE-2006-3747

Nodes
27,087
24,169
3,399
1,345
8,899
1,488
6,688
74,186
18,790

smbclient CVE-2009-1886 166,081

RegSet: Register Assignment Gadgets
RegMod: Register Modification Gadgets
MemRd: Memory Read Gadgets

MemWr: Memory Write Gadgets

Call: Function/System Call Gadgets
Cond: Conditional Statement Gadgets
Total: Total number of Functional Gadgets

RegSetRegMod MemRd MemWr Call

40,143
31,497
5,162
2,317
14,101
2,327
8,800
124,053
33,615
265,980

387
1,168
26

9

62

77

98
639
212
1,481

1,592
1,522
157
39
274
54
214
1,736
490
6,791

199 77
279 35
18 45
8 11
11 94
/7 19
19 63
193 100
66 127
951 119

Cond
3,029
3375
307
89
921
125
558
4555
1,768
28,705

Total
45,427
37,876

5715

2473
15,463

2,609

9,752

131276
36,278
304,027

SPL

Payload
regset4

regref4
regsetd
regref5
regmod

memrd
memwr
print
execve
abloop
infloop
ifelse
loop

payloads

Description
Initialize 4 registers with arbitrary values

Initialize 4 registers with pointers to arbitrary memory
Initialize 5 registers with arbitrary values

Initialize 5 registers with pointers to arbitrary memory
Initialize a register with an arbitrary value and modify it

Read from arbitrary memory

Write to arbitrary memory

Display a message to stdout using write

Spawn a shell through execve

Perform an arbitrarily long bounded loop utilizing regmod
Perform an infinite loop that sets a register in its body
An if-else condition based on a register comparison
Conditional loop with register modification

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35

