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The Great Promise of Trusted Computing
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Historical Overview: Deployed Systems 
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Trusted Computing under Attack 
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Goal: Self-Contained Security
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Intel Software Guard Extensions (SGX)
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Intel Software Guard Extensions (SGX)
• OS creates and manages enclaves, allocates memory from Enclave Page Cache (EPC) 

• OS maps physical to virtual memory, as well as loads data and code into enclave

• Trust assumptions: All software components untrusted
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Intel Software Guard Extensions (SGX)

• Asynchrones Enclave Exit (AEX): Enclaves interruptable, CPU 
saves/deletes context in CPU registers
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Code-reuse Attacks: Big Picture
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Code-reuse Attacks: Big Picture
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Hacking in Darkness: ROP against Secure Enclaves

• Memory corruption attack against Intel SGX (Dark-ROP)

• Combines ROP techniques with oracles that inform about internal 
state of a victim enclave

• Requires kernel privileges 

• Relies on running the target enclave multiple times and crashes to 
leak information

• Demonstrates how the security of SGX can be disarmed 
• Exfiltration of all memory contents from the enclave (code and data)
• Bypassing the SGX attestation

SEPTEMBER 9 – 13, 2019 CROSSING Summer School on Sustainable Security & Privacy

[Lee et al., USENIX Security 2017]
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SGX-Shield: Randomization for SGX Enclaves

• Address Space Layout Randomization (ASLR) for SGX enclaves

• Effective against ROP, since it relies on addresses of code snippets 
(gadgets)

• Limited entropy due to limited memory space

• Still effective against Dark-ROP
• Since an enclave will be re-randomized after the crash

SEPTEMBER 9 – 13, 2019 CROSSING Summer School on Sustainable Security & Privacy

[Seo et al., NDSS 2017]
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SGX SDK and The Guard’s Dilemma
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SGX SDK and The Guard’s Dilemma

• tRTS is not randomized by SGX-Shield

• It cannot be randomized due to architectural specifics
• E.g., enclave functions are invoked using fixed pre-defined entry points

• Contributions by Biondo et al.:
• show that tRTS has enough gadgets to mount ROP

• develop new techniques that do not require enclave crashes 

• new techniques do not require kernel privileges from an attacker
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Side-Channel Attack: General Principle
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Page Fault Attacks on SGX
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Cache Attacks on SGX: Hack in The Box 
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Prime + Probe
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How to measure the time difference?

• #1: Time Stamp Counter (TSC)
• Not precise enough to reliably distinguish the difference between L1 vs. L2 hits 
• Reading the time stamp counter by itself suffers from noise

• #2: Counting thread: 
- a thread that only performs a loop that constantly increments a value (basically a 

timer)
- Slows down the victim, can be detected

• #3: Performance Monitoring Counter (PMC): 
- can be configured to count different events:  executed cycles, cache hits or cache 

misses for the different caches, mis-predicted branches, etc. 
- Anti Side-channel Interference (ASCI) feature: 

- Can be configured to disable thread-specific performance monitoring of enclaves
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Side-Channel Grand Challenge: Noise

• Operating System and any other software running on the platform 
generate noise

• Even attacker’s own code pollutes the cache
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Cache Attacks on SGX
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SGX Side-Channel Attacks Comparison
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Attack Type
Observed 

Cache
Interrupting 

Victim
Time 

Measurement
Attacker 

Code
Attacked

Victim

Lee et al.
Branch 

Shadowing
BTB / LBR Yes Execution Timing OS

RSA & SVM 
classifier

Moghimi et al. Prime + Probe L1(D) Yes TCS OS AES

Götzfried et al. Prime + Probe L1(D) No PCM OS AES

Our Attack Prime + Probe L1(D) No PCM OS
RSA & 

Genome 
Sequencing

Schwarz et al. Prime + Probe L3 No Counting Thread Enclave AES

PCM: Performance Counter Monitor BTB: Branch Target Buffer    LBR: Last Branch Record      TSC: Time Stamp Counter
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Our Attack

SEPTEMBER 9 – 13, 2019 CROSSING Summer School on Sustainable Security & Privacy

SMTSMT

L1

OS

P
ro

ce
ss

 
m

+1

SMTSMT

L1

Core 0 Core n

PCM

PCM: Performance Counter Monitor | SMT: Simultaneous Multithreading | APIC: Advanced Programmable Interrupt Controller 

[Brasser et al., WOOT’17]

24



Our Attack

SEPTEMBER 9 – 13, 2019 CROSSING Summer School on Sustainable Security & Privacy

SMTSMT

L1

OS

P
ro

ce
ss

 
m

+1

SMTSMT

L1

Core 0 Core n

PCM

PCM: Performance Counter Monitor | SMT: Simultaneous Multithreading | APIC: Advanced Programmable Interrupt Controller 

[Brasser et al., WOOT’17]

24



Our Attack

SEPTEMBER 9 – 13, 2019 CROSSING Summer School on Sustainable Security & Privacy

SMTSMT

L1

OS

P
ro

ce
ss

 
1

P
ro

ce
ss

 
2

V
ic

ti
m

P
ro

ce
ss

 
n

A
tt

ac
ke

r

P
ro

ce
ss

 
m

P
ro

ce
ss

 
m

+1

SMTSMT

L1

Core 0 Core n

PCM

PCM: Performance Counter Monitor | SMT: Simultaneous Multithreading | APIC: Advanced Programmable Interrupt Controller 

[Brasser et al., WOOT’17]

24



Our Attack

SEPTEMBER 9 – 13, 2019 CROSSING Summer School on Sustainable Security & Privacy

SMTSMT

L1

OS

P
ro

ce
ss

 
1

P
ro

ce
ss

 
2

V
ic

ti
m

P
ro

ce
ss

 
n

A
tt

ac
ke

r

P
ro

ce
ss

 
m

P
ro

ce
ss

 
m

+1

SMTSMT

L1

Core 0 Core n

PCM

PCM: Performance Counter Monitor | SMT: Simultaneous Multithreading | APIC: Advanced Programmable Interrupt Controller 

Uninterrupted execution
• Attacker assigns victim and attacker code to the 

same core, all other tasks to others
• Attacker assigns victim and attacker code to 

different SMT threads
• Monitors only one cache set per execution to 

increase measurement resolution

[Brasser et al., WOOT’17]
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Reducing noise
Use kernel sysfs interface to assign interrupts
to other cores
• Timer interrupt (per thread) cannot be reassigned
• Lowered timer frequency to 100Hz (i.e., every 10ms)

[Brasser et al., WOOT’17]
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Prime+Probe attack using L1 data cache
• Eviction detection using Performance Counter 

Monitor (L1D_REPLACEMENT)
• Anti Side-Channel Interference (ASCI) not effective, 

monitoring cache events of attacker possible

[Brasser et al., WOOT’17]
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Our Attack Use-Cases
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• Attacking open source k-mer analysis tool 
PRIMEX  [Lexa et al., Bioinformatics 2003]

• Extracting genome sequences

[arXiv:1702.07521] [Brasser et al., WOOT 2017]

• Attacking RSA implementation from the 
Intel IIP crypto library in the Intel SGX SDK

• Extracting 2048-bit RSA decryption key
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Extracting RSA decryption key
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RSA Key Exfiltration: Victim Enclave

• RSA Decryption:  m = cd (mod N)
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RSA Key Exfiltration: Victim Enclave

• RSA Decryption:  m = cd (mod N)
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Secret-dependent memory access!
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Fixed-size Sliding Window Exponentiation
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Attack Result

• 2048-bit Chinese Remainder Theorem RSA key

• Only 300 decryptions to leak 70% of key bits

• Enough to recover key [Heninger et. al., CRYPTO’09]
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TimeEach colored dot represents a multiplier access candidate, 15 monitoring rounds
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Genome Sequencing
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Genome Analysis Enclave (e.g. PRIMEX)
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TTGACCCACTGAATCACGTCTG…

Encrypted Genome Sequence
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Genome Sequencing
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Pre-processing

• Split input into 
sub-sequences 
(k-mer)

• Store k-mer
positions in hash-
table 

Analysis

• Statistical 
analysis, e.g., to 
identify 
correlation in 
the data

Genome Analysis Enclave (e.g. PRIMEX)

TTGACCCACTGAATCACGTCTG…

Encrypted Genome Sequence
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Genome Sequencing
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Pre-processing

• Split input into 
sub-sequences 
(k-mer)

• Store k-mer
positions in hash-
table 

Analysis

• Statistical 
analysis, e.g., to 
identify 
correlation in 
the data

Genome Analysis Enclave (e.g. PRIMEX)

ATCGATCGATCG…

Attacker’s goal: Identify k-mer
sequences in the input string, 
allowing the identification of 

individuals

TTGACCCACTGAATCACGTCTG…

Encrypted Genome Sequence
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Some Basics on Human Genomes
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TTGACCCACTGAATCACGTCTGACCGCGCGTACGCGG
TCACTTGCGGTGCCGTTTTCTTTGTTACCGACGACCG
ACCAGCGACAGCCACCGCGCGCTCACTGCCACCAAAA
GAGTCATATCGATCGATCGATCGATCGATCGATCGAT
CGATCGATCGATCGATCGATCGATCGATCGATCATCA
CAGCCGACCAGTTTCTGGAACGTTCCCGATACTGGAA
CGGTCCTAATGCAGTATCCCACCCTCCTTCCATCGAC
GCCAGTCGAATCACGCCGCCAGCCACCGTCCGCCAGC
CGGCCAGAATACCGATGACTCGGCGGTCTCGTGTCGG
TGCCGGCCTCGCAGCCATTGTACTGGCCCTGGCCGCA
GTGTCGGCTGCCGCTCCGATTGCCGGGGCGCAGTCCG
CCGGCAGCGGTGCGGTCTCAGTCACCATCGGCGACGT
GGACGTCTCGCCTGCGAACCCAACCACGGGCACGCAG
GTGTTGATCACCCCGTCGATCAACAACTCCGGATCGG
CAAGCGGGTCCGCGCGCGTCAACGAGGTCACGCTGCG
CGGCGACGGTCTCCTCGCAACGGAAGACAGCCTGGGG
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Some Basics on Human Genomes

SEPTEMBER 9 – 13, 2019 CROSSING Summer School on Sustainable Security & Privacy

• Nucleobases
• Adenine (A)
• Cytosine (C)
• Guanine (G)
• Thymine (T)

• Microsatellite
• Forensic analysis
• Genetic fingerprinting
• Kinship analysis

TTGACCCACTGAATCACGTCTGACCGCGCGTACGCGG
TCACTTGCGGTGCCGTTTTCTTTGTTACCGACGACCG
ACCAGCGACAGCCACCGCGCGCTCACTGCCACCAAAA
GAGTCATATCGATCGATCGATCGATCGATCGATCGAT
CGATCGATCGATCGATCGATCGATCGATCGATCATCA
CAGCCGACCAGTTTCTGGAACGTTCCCGATACTGGAA
CGGTCCTAATGCAGTATCCCACCCTCCTTCCATCGAC
GCCAGTCGAATCACGCCGCCAGCCACCGTCCGCCAGC
CGGCCAGAATACCGATGACTCGGCGGTCTCGTGTCGG
TGCCGGCCTCGCAGCCATTGTACTGGCCCTGGCCGCA
GTGTCGGCTGCCGCTCCGATTGCCGGGGCGCAGTCCG
CCGGCAGCGGTGCGGTCTCAGTCACCATCGGCGACGT
GGACGTCTCGCCTGCGAACCCAACCACGGGCACGCAG
GTGTTGATCACCCCGTCGATCAACAACTCCGGATCGG
CAAGCGGGTCCGCGCGCGTCAACGAGGTCACGCTGCG
CGGCGACGGTCTCCTCGCAACGGAAGACAGCCTGGGG
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Genome Pre-Processing
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Hash Table
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AG CA G CA T C AG GT A C…
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• Hash table access pattern
• Hash table entry 8 bytes

• Cache line size 64 bytes
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• Genome unstructured

• Microsatellites structured
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…

Hash Table

0 3

1

2

Indexer

• Hash table access pattern
• Hash table entry 8 bytes

• Cache line size 64 bytes

• Collisions

• Genome unstructured

• Microsatellites structured

AG CA G CA T C AG GT A C…

TTGACCCACTGAATCACGTCTGACCGCGCGTACGCGGTCACTTGC
GGTGCCGTTTTCTTTGTTACCGACGACCGACCAGCGACAGCCACC
GCGCGCTCACTGCCACCAAAAGAGTCATATCGATCGATCGATCGA
TCGATCGATCGATCGATCGATCGATCGATCGATCGATCGATCGAT
CATCACAGCCGACCAGTTTCTGGAACGTTCCCGATACTGGAACGG
TCCTAATGCAGTATCCCACCCTCCTTCCATCGACGCCAGTCGAAT
CACGCCGCCAGCCACCGTCCGCCAGCCGGCCAGAATACCGATGAC
TCGGCGGTCTCGTGTCGGTGCCGGCCTCGCAGCCATTGTACTGGC
CCTGGCCGCAGTGTCGGCTGCCGCTCCGATTGCCGGGGCGCAGTC
CGCCGGCAGCGGTGCGGTCTCAGTCACCATCGGCGACGTGGACGT
CTCGCCTGCGAACCCAACCACGGGCACGCAGGTGTTGATCACCCC
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Microsatellites and Processed k-mers
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Genome Sequencing Attack Results

• Monitor cache lines associated to satellite

• High activity in cache lines reveal occurrence of satellite in input 
string
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Genome Sequencing Attack Results

• Monitor cache lines associated to satellite

• High activity in cache lines reveal occurrence of satellite in input 
string
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A

D

B

C

35



Speculative Execution Attacks
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Speculative Execution Bug
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Meltdown

• Exploits speculative execution bug
 attacker can read arbitrary physical memory (including 

kernel memory) from an unprivileged user process

 this can be used, e.g., to break kernel ASLR 
from unprivileged process

 or, to extract secrets from Intel SGX enclaves!
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Foreshadow: Meltdown against SGX

• Foreshadow [Van Bulck, USENIX Security 2018]

• Extract long-term secrets from Intel 
Launching and Quoting Enclaves

• Speculative access only possible 
for data in L1 cache

• Implications
• Attacker can bypass vetting of enclaves by 

Intel

• Attacker can forge local and remote 
attestations sent to other enclaves and to 
remote parties

SEPTEMBER 9 – 13, 2019 CROSSING Summer School on Sustainable Security & Privacy
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How to Get Enclave Data into L1 Cache?

• Run enclave and interrupt when target data was used
• The enclave’s usage of the target data brings it into the cache

• Use SGX paging mechanism
• OS can swap in/out pages of enclaves

• When an enclave page is swapped in, its content is loaded into L1 cache

• Malicious OS can run attack without even running the enclave
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Defenses Against Foreshadow 

• Flush L1 cache on enclave exit 
• Provided via microcode update
• Only effective without hyperthreading

• Include hyperthreading configuration in attestation report
• “[…] the Intel SGX attestation will indicate whether hyperthreading has been 

enabled by the BIOS.” [Intel*]

• Renew SGX keys
• “The microcode update changes the Security Version Number (SVN) 

associated with the Intel SGX implementation and provides enclaves on the 
platform with new sealing and attestation keys.” [Intel*]
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* https://software.intel.com/security-software-guidance/software-guidance/l1-terminal-fault
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Alternative Solutions?

SEPTEMBER 9 – 13, 2019 CROSSING Summer School on Sustainable Security & Privacy 42



Alternative Solutions?

SEPTEMBER 9 – 13, 2019 CROSSING Summer School on Sustainable Security & Privacy

Buy Chinese Quality Chips,
not cheap American copies!
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Side-Channel Defenses Using  TSX
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Intel TSX
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Intel TSX

• Intel implementation of Hardware Transactional Memory (HTM)

• Designed for high-performance concurrency

• Allows synchronous memory transactions

• TSX is not available on all SGX-enable processors
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SGX Specific Side-Channel Defenses Using TSX

Detecting enclave’s interruption

• Frequent interrupts evidence for side-channel attack

• T-SGX: Uses TSX feature to detect enclave interrupt [Shih et al., NDSS’17]

• Déjà Vu : Uses TSX to detect enclave slowdown [Chen et al., AsiaCCS’17]
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SGX Specific Side-Channel Defenses Using TSX

Detecting cache evictions

• Eviction of the victim’s cache entries could lead to information leakage

• Cloak: Prime cache before accessing sensitive data [Schuster et al., USENIX 2017]
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General Hardware-based Side-Channel Defenses
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Temporal Cache Isolation

• Flush on each context switch

• Ineffective on SMT-enabled systems where 
caches are shared contemporaneously

• E.g., [Costan et al., USENIX Sec’16]
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Cache Partitioning / Coloring 

• Reduces the amount of cache available to individual 
software

• E.g., [Domnister et al., TACO’12]
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Randomized Cache Mappings

• Adversary cannot link cache observation with memory 
locations

• Frequency analysis or predictable access patterns can reveal randomization secret

• E.g., [Wang et al., ISCA’07]
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General Software-only Side-Channel Defenses
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Side-channel resilient 
software design

Monitoring for attack effects

Oblivious execution / ORAM

Example

Problems

• Scatter and gather: 
data accesses effect all
cache lines

• Not applicable to all 
applications

• Manual software 
hardening required

Example

Problems

• Use hardware 
performance counter to 
detect unusually high 
cache eviction rate

• Requires privileged 
entity (not available in 
SGX model)

Oblivious RAM

Problems

• All memory accesses 
(code and/or data) 
indistinguishable

• Too inefficient, ORAM 
metadata needs to be 
protected as well
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Our Recent Work: 
DR.SGX: Automated and Adjustable Side-Channel Protection

for SGX using Data Location Randomization

[Brasser et al., ACSAC 2019]
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DR.SGX: Objective and Approach

• Objective: Similarly to ORAM, make memory accesses 
indistinguishable
• but at a cheaper cost

• without relying on meta-data that needs protection

• Approach: Runtime fine-grained data location randomization 
• format-preserving encryption to determine location of randomized data

• only small constant-size metadata needed

• compiler-based approach (no annotations needed)

• gradual randomization, interleaved with enclave execution

• configurable re-randomization rate
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Randomizing Memory: ORAM vs. DR.SGX
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DR.SGX Re-randomization
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Data Randomization
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Performance Evaluation using Nbench

• Without runtime re-randomization (geometric mean about 4x)
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Performance Evaluation using Nbench

• With different re-randomization windows (geometric mean up to 12x)
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ORAM vs. Dr.SGX: Performance Comparison

• Obfuscuro [Ahmad et al., NDSS 2019]
• Obfuscation engine on Intel SGX

• Implements both, ORAM and oblivious execution

• Performance overheads of 83x on average and up to 220x

• Dr. SGX
• Performance overhead 4x – 12x

• at least one order of magnitude lower than Obfuscuro

• Allows developers to balance between increased side-channel protection and 
the performance cost based on adjustable security parameter
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Conclusion

• Great concepts suffer from implementation problems

• Intel SGX is no exception

• Side-channel attacks are a major threat to Intel SGX
• Were deemed as ‘too difficult’ and were left out of the attacker model

• Research has shown it otherwise

• Attacks still can be improved through more automation 

• Countermeasures
• Range from specific protections against particular problems to generic 

solutions

• Generic solutions, however, come at significant (prohibitive?) cost

• There is a need for more efficient generic solutions
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