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Need for Collaborative Learning

• Insufficient observations
○ Data at a node is insufficient to 

learn a good model

●Storage constraints
o Data too big to collect in 

one place

●Limited computation
o Can not perform all 

computation in one place

●Privacy concerns
o Data must remain where it 

was generated
A better model can be learned if 
entities collaborate!



Federated Learning
● Clients train a machine learning model with 

the help of an aggregation server 
○ Federated Averaging [McMahan et al. 2017]

● Training is an iterative process
○ Clients receives global model 
○ Subset of clients update the model using 

local data and send updates to server 
○ Server updates the global model by 

aggregating client contributions

● Benefits
○ Training data remains on client devices
○ Computational efficiency

McMahan, Brendan, et al. Communication-efficient learning of deep 
networks from decentralized data. Artificial Intelligence and Statistics. 
PMLR, 2017.
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P2P Federated Learning
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● No central server 
○ Clients (peers) collaborate to learn a personal or global model



Goals for Machine Learning
●Accuracy

●Precision

●Recall

● F-score

●MSE

● Robustness
○ Algorithms should be resilient to changes when using it on  

new data vs the training dataset

● Fairness
○ Datasets the models are trained on should be 

representative and avoid biases

● Privacy
o Use of model should not reveal information about data it 

was trained on

● Security
o Models should work correctly in the presence of attacks



Adversarial Machine Learning: 
Taxonomy
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Attacks against Machine Learning
● Attacker’s objective
o Targets system goals

● Attacker’s capability
o Resources available
o How/when interacts 

with the system: 
inject/change 
data/model updates

● Attacker’s knowledge
o What they know

Backdoor Attack



Network-level Attacks
● Can impact communication directly 

between two parties 
o Modify
o Inject
o Replay
o Drop

● Can impact communication 
indirectly by influencing the 
communication graph
o Partition the network
o Disconnect clients
o Disconnect servers

For federated learning communication is: 
data, local updates, updated model



Network-level Attacks against ML: Challenges

It is not clear how effective network-level attacks 
would be against machine learning!

● Attacker’s goal: 
o Preventing or changing communication to impact model accuracy 

● Attacker’s capability
o Network partitions difficult to create and detectable
o Cryptography can prevent modification/injection
o Attack must be sustained as machine learning is iterative

● Attacker’s knowledge
o Global network information is difficult to obtain
o Channels can be encrypted



In this talk

Can an adversary with network-level capability decrease the 
accuracy of the machine learning models?

Can an adversary with network-level capability further 
amplify their attack with poisoning attacks?

Can we mitigate network-level attacks?

FEDEREATED LEARNING 



Federated Learning: Attacker Model
● Attacker Goal
○ Reduce accuracy on a target class  

● Attacker Capabilities
○ Attacker can interfere with the delivery of 

model updates or the global model weights
○ Attack can be amplified by compromising a 

few clients and modifying their updates

● Attacker Knowledge
○ Attacker has access to global model in each 

round. (Federated learning is an open system, the 
attacker can participate as one of the clients.)
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observe only a small subset of the participating clients, and
show that our attacks are still effective, for instance inflicting
a 43% relative accuracy drop when observing only a third of
the clients in a computer vision task.

Federated learning system owners do not usually control
the underlying network and might not be able to implement
network-level mitigations to make communication more re-
silient. Complementary to such network-level defenses, we
propose a server-level defense that is agnostic to how the
dropping attack is performed. Our defense modifies client
sampling in each round of FL training to increase the likelihood
of selecting clients who sent useful updates in previous rounds
of the protocol, while decreasing the probability of selecting
less relevant clients. Interestingly, defensive client selection
leverages the same procedure for client identification employed
by the network-level adversary. The defense is extremely effec-
tive against a targeted dropping attack. For instance, in the same
text classification task mentioned above, while an unmitigated
attack would completely disrupt the model accuracy on the tar-
get task (from 87% to 17%), the defense achieves an accuracy
of 96%, which exceeds that of the original model before an
attack is mounted. Moreover, our defense can be combined
with a standard poisoning defense based on update clipping to
withstand both targeted dropping and model poisoning attacks.
On the same task, the combined dropping and poisoning attack
brings the target accuracy to 0, and the combination of our
defense with clipping results in 94% accuracy on the target
population. For encrypted communication the improvements
compared to the original accuracy can be as high as 34%.

To summarize, the contributions of the paper are: (i) the first
study of network-level adversaries in FL, specifically packet
dropping attacks targeting a subpopulation and amplification
by using model poisoning attacks; (ii) an algorithm for identi-
fication of highly contributing clients, allowing the attacker to
be more effective than just randomly dropping traffic between
clients and server; (iii) a defense based on up-sampling highly
contributing clients to the learning task which can be combined
with clipping to mitigate both targeted dropping and poisoning
attacks; (iv) a comprehensive evaluation across multiple model
architectures, datasets, and data modalities (image and text).
For reproducibility, all code is publicly released1.

II. BACKGROUND AND THREAT MODEL

A. Federated Learning
FL considers a set of n clients, each with a local dataset Di,

and a server S. Clients train locally on their own datasets and
the server requests model updates, rather than data, building an
aggregated global model iteratively over time [18]. We consider
here the Federated Averaging training algorithm designed for
cross-device settings [1]. In each round 1  t  T , the server
randomly selects a subset of m  n clients to participate in
training, and sends them the current global model ft�1. Each
selected client i trains locally using dataset Di, for a fixed

1https://github.com/ClonedOne/Network-Level-Adversaries-in-Federated-
Learning

number of TL epochs. The server updates the global model ft
by mean aggregation of local updates Ui: ft = ft�1+⌘

Pm
i=1 Ui

m .

Data privacy can be further enhanced in FL by secure aggre-
gation performed via Multi-Party Computation (MPC) [19].

Algorithm 1: Federated Averaging Protocol
Data: Clients C = {Di}ni=1, Federated Learning Server S,

rounds T , clients per round m, aggregation learning
rate ⌘

Function FedLearn(S, C):
// Function run by server
f0 = INITIALIZEMODEL()
for t 2 [1, T ] do

// Get updates from m participants in round i
Mt = SELECTPARTICIPANTS(C,m)
REQUESTUPDATE(ft�1,Mt)
Ut = RECEIVEUPDATE(Mt)
// Update and send out new model
fi = UPDATEMODEL(ft�1, Ut, ⌘)
BROADCASTMODEL(ft, C)

B. Threat Model
Adversarial goal: An attacker can target the accuracy for all
the classes of the learning task – availability attacks, or target
a particular class – targeted attacks. Targeted attacks are much
more difficult to detect as the attacker strives to make the model
retain its test accuracy for non-targeted points to avoid trivial
detection. We consider targeted attacks and define a population
to be one of the classes in the learning task, but this notion
could be extended to sub-classes as well. We do not consider
poisoning availability attacks which are detectable and can be
addressed with existing defenses [5], [6], [9].
Attack strategies: The attacker can conduct poisoning attacks,
or network-level attack. Poisoning attacks can target the training
data – an adversary injects maliciously crafted data points
to poison the local model [2], or the model - where the
adversary compromises a set of clients and sends malicious
updates to the protocol with the goal of achieving a certain
objective in changing model’s prediction [4], [7], [8]. Both
these attacks are conducted by manipulating directly the inputs
to the machine learning algorithm. We consider an attacker
with model poisoning (POISON MODEL) capability, using it
to amplify network-level attacks.

In network-level attacks, based on their network-level ca-
pabilities, the adversary can observe communication sent over
the network and prevent the machine learning algorithm from
receiving the information needed to learn a good model. The
basic action for a network-level attack is dropping traffic.
We consider a smart attacker that selectively drops traffic to
maximize the strength of the attack while minimizing detection.
The attacker has several decisions to make: (1) what clients to
select to drop their contributions, (2) when to start the attack
given that federated learning is an iterative protocol, and (3)
how many packets (i.e., local models) to drop. We focus on a
targeted dropping attack in which the attacker selects a set of
clients contributing highly to the target class for dropping their



Attacker Capabilities

● The attacker drops data for a subset of 
clients and prevent their updates from 
getting to the server
○ Random dropping: Selection of 

random victim clients and dropping 
their messages 

○ Targeted dropping: Identifying 
clients whose updates contribute 
significantly to the target class

Dropping attacks Model poisoning attacks

● The attacker compromises a subset of 
clients

● They can send malicious updates by 
performing model poisoning attacks

● Previous work studied model poisoning 
in isolation [Bagdasaryan et al. 2020, 
Bhagoji et al. 2019], but we are 
interested in amplifying network-level 
attacks



Network Attack Model
● COMM_PLAIN: All communication between clients and server is unencrypted 
○ Network-level adversary obtains maximum information, as they can observe all 

the transmitted data
○ Most powerful adversary, useful for evaluating defenses 

● COMM_ENC: All communication between clients and server is encrypted 
○ Network-level adversary could infer the set of clients participating in each round, 

but not the exact model updates they send

● COMM_ENC_LIMITED: All communication is encrypted, and adversary 
observes only a subset of clients (has limited visibility)
○ Most constrained and realistic adversary



Methodology: Dropping Attacks
● Naive strategy: Drop updates from 

randomly selected clients

● Main observation: Clients do not contribute 
equally to the target class 
○ Data is non-iid in FL deployments [Kairouz 

et al. 2019]

● Insight: Design Client Identification 
method to identify the top performing clients 
for target class
○ Observe client updates for a number of 

rounds before dropping
○ Results in more effective targeted 

dropping strategy 

Target class

Clients 2 and 4 contribute 
to target class 



Client Identification: COMM_PLAIN
● COMM_PLAIN: The attacker can 

observe individual clients’ updates

● Strategy: compute the model loss 
difference before and after a client’s 
update on target class
○ Repeat for multiple rounds
○ Rank clients by largest difference in 

loss across rounds

● Challenge: How to handle encrypted 
communication?

Validation 
dataset for 
target class 

Time t: Model wt

Previous 
global 
model

Local 
update of 

client i



Client Identification: COMM_ENC
Time t: Model wt● COMM_ENC: The attacker cannot 

observe individual clients’ updates, 
only global model aggregates

● Strategy: compute the model loss 
difference using the previous and 
current aggregated global models
○ Apply the loss difference to all 

participating clients in current round
○ Repeat for multiple rounds
○ Rank clients by largest difference in 

loss across rounds
○ Requires more observation rounds 

than COMM_PLAIN
Previous 

global 
model

Current 
global 
model



Client Identification: Parameters
● How many clients to drop?
○ Tradeoff between attack success on 

target class and remaining stealthy 
on other data

● How many observation rounds are 
needed to identify top clients?
○ Wait number of rounds so that all 

clients of interest are observed at 
least once

○ Use coupon collector for analysis: 
O(n/m log n), where n is total number 
of clients and m is number of clients 
sampled per round

Target class



Evaluation Setup 
Dataset / Modality Task/Classes Model FL Parameters

EMNIST
Images

Digit recognition
10

CNN 100 clients
1000 samples each

FashionMNIST
Images

Image recognition
10

CNN 60 clients
400 samples each

DBPedia
Text

Text classification
14

GloVE embedings and 
one-dimensional CNN

60 clients
1000 samples each

Target distribution
● One of the classes in the dataset (0, 1, or 9)
● Assume k clients have examples from target class, k = {9,12,15}
● Heterogeneous data: the k clients have 50% of examples from target class, and the rest 

are sampled with Dirichlet distribution



Client Identification Results 

Network 
Communication

Dataset T=5 T=10 T=15 T=20 T= 50 T=70

COMM_PLAIN EMNIST 4.25 9.5 11.5 12.0 14.0 14.0

DBPedia 8.0 13.25 13.75 15.0 15.0 15.0

COMM_ENC EMNIST 3.0 4.0 4.0 3.75 5.75 7.0

DBPedia 5.25 7.0 8.0 9.0 11.25 11.75

Average number of identified clients for target class 0, k=15 clients

● Findings:
○ Under COMM_PLAIN all clients are identified for DBPedia after 20 rounds
○ Fewer clients identified under COMM_ENC, but still on average more than 2/3 of clients are 

identified for DBPedia after 50 rounds
○ Number of rounds for convergence is 100 for EMNIST and 200 for DBPedia



Targeted Dropping for COMM_PLAIN

Dataset Acc Dropped k/3 Dropped 2k/3 Dropped k
Random Targeted Random Targeted Random Targeted

EMNIST 0.80 0.82 0.74 0.81 0.50 0.82 0.02

FashinMNIST 0.55 0.53 0.23 0.53 0.03 0.5 0.00

DBPedia 0.53 0.54 0.01 0.47 0.00 0.45 0.00

• Baseline: randomly drop the same number of clients
• For some datasets (DBPedia). targeted dropping of k/3 clients is catastrophic
• Overall model accuracy remains similar to original before attack
• Results are similar for COMM_ENC: k/3 dropping results in 0.38 accuracy on 

FashionMNIST and 0.06 accuracy on DBPedia

Accuracy on target class for k=15 clients 



Targeted Dropping and Model Poisoning

COMM_PLAIN

COMM_ENC

FedAvg, No clipping FedAvg, with Clipping

Use backdoor attack [Gu et 
al. 2017] with model 
poisoning [Bagdasaryan et 
al. 2020], [Sun et al. 2019]

T=100



Limited Adversarial Visibility

● COMM_ENC_LIMITED
○ Adversary observes a subset of clients (between 10 and 60 on x axis)
○ Parameter alpha (y axis) controls how many clients from the observed 

subset are from the target distribution
● Attack is successful even under limited visibility! 

Drop Drop and Poison

Stronger attack



In this talk

Can an adversary with network observability capability 
influence the machine learning model in federated learning?

Can an adversary with network observability capability 
amplify his attack?

Can we mitigate network-level attacks in federated learning?



Defense: UpSampling  

Sample with higher 
probability

● Key insight
○ Use the same Client Identification 

procedure to identify important clients 
for the target class

○ Server knowledge
■ Individual client models under both 

COMM_PLAIN and COMM_ENC
■ Aggregated models under MPC

● UpSampling Defense
○ Server runs Client Identification to rank 

clients
○ Increase sampling weight proportional 

to rank
○ Can be combined with network-level 

defenses [Awerbuch et al. 2008, 
Obenshain et al. 2016] and poisoning 
defenses, e.g., gradient clipping [Sun et 
al. 2019]

Target class



Defense Evaluation 

Very strong attack

Defense restores accuracy 
for COMM_ENC



In this talk

Can an adversary with network observability capability 
influence the machine learning model in federated learning?

Can an adversary with network observability capability 
amplify his attack?

Can we mitigate network-level attacks in federated learning?

What about attacks against P2P federated learning ?



Centralized vs P2P Federated Learning

● Server acts as central aggregator
● Server is a single point of failure
● Asymmetric resources 
●Communication is point to point
● Learning is through central aggregator

● No central trusted aggregator
● No single point of failure
● Symmetric resources at each peer
● Communication is multi-hop
● Learning is through a graph 
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Communication and Learning Graphs

• Communication network:  failures, 
partitions
• Physical network: real network
• Logical network: overlay, may share 

physical links
• Learning network: bootstrapping, 

convergence
• Input peers: peers each node is learning 

from
• Output peers: peers a node shares its 

model with 

Dependencies and trade-offs between the learning network and 
the communication network



Backdoor attacks in P2P FL
Attacker has partial view of the P2P network

(a) Test Accuracy (b) Attack Success

Fig. 8. Constraining the adversary’s view. We compare the Global with the
Partial View in IID and non-IID (↵ = 10) settings. (a) test accuracy on clean
data; (b) attack success after the backdoored model has reached high accuracy.

non-IID and IID achieve the same level of attack success: 0.99
with Global view and 0.98 with Partial view.

VI. DEFENSE

We first discuss standard defenses against poisoning attacks
in FL and show empirical evidence that these defenses are
ineffective, achieve slower convergence, and reduce the model
accuracy. We then propose a new defense against poisoning in
P2PFL and show experimentally that our defense counteracts
backdoor attacks without a significant drop in model accuracy.

A. Existing Defenses
Existing defenses in FL rely on either robust aggregation

functions [46]–[48] that exclude some of the outlying client
updates from the model, or gradient clipping techniques [19],
[37], [63] that limit the contributions of each client to the
model update. We select a defense from each class: Trimmed
Mean [48] and gradient clipping [37], adapt them to P2PFL,
and evaluate them against the backdoor attacks.
Robust Aggregation. We adapt Trimmed Mean [48] to P2PFL,
by sorting all the peer updates and filtering out the p highest
and lowest values and averaging the remaining updates. In our
experiments (Figure 9), we observed for p = 1 that Trimmed
Mean is not effective against the backdoor attacks in P2PFL,
as the attacker still achieves 100% attack success. Additionally,
the learning procedure is slowed down, and accuracy converges
slower than the “No Defense” case.
Clipping Defense. Gradient clipping represents another stan-
dard defense against poisoning attacks in FL. The most dev-
astating poisoning attack in FL is model poisoning, where the
contribution of each compromised node is amplified by the
boosting factor applied to the local model. In the extreme,
a model boosting attack could overwrite the global model,
and therefore gradient clipping is critical for limiting the
contribution of individual clients. In gradient clipping in FL,
the server bounds the update sent by each participant by a
threshold norm C before aggregation. We adapt this defense
to the P2PFL setting that does not rely on a trusted server to
aggregate and bound updates. Instead, each peer rescales all
updates which contribute to its model using:

U t
j,C = U t

j/max(1, ||U t
j ||/C) (3)

U t
j is the update sent by peer j at round t, ||U t

j || is the `2 norm
of the peer update, and C is the clipping norm. Selecting the
clipping norm C is not straightforward, as there is a tradeoff
between attack success and test accuracy. A large C reduces
the impact of the defense, while a small C reduces the test
accuracy. A node can generally trust its own updates, but
bounding only neighbors’ contributions and not its own offsets
the benefit of using P2PFL instead of local training. Similarly,
setting the clipping norm too small will reduce the benefit of
aggregating updates from neighbors. On the other hand, a large
norm enables potential attacks to be aggregated into the model.

We implemented our framework in Python’s deep learning
API Keras using the Adam optimizer — a stochastic gradient
descent method based on adaptive estimation of first-order and
second-order gradients. For each peer, we extract the weights of
the current model, rescale them to fit within the clipped norm,
and then apply the rescaled weights to update the model. To
limit the contribution of malicious peers in P2PFL we first
experimented with small clipping values (0.05), but the model
did not converge. Next, we selected clipping norm values of
0.25, 0.5, and 1 and present results with these clipping norms
in Figure 9. The 0.25 norm reduces the attack success from 1
to 0.4 (Figure 9b) but at a high cost on accuracy. The larger
norms impose a smaller cost on accuracy, as the attack picks
up, approaching the “No Defense” success of 1.0.

(a) Test Accuracy (b) Attack Success

Fig. 9. Defenses: (a) accuracy and (b) attack success on poisoned samples with
60-node Watts Strogatz topology, 10% adversarial nodes, PageRank strategy.

B. Our Defense

We showed in the previous section that standard gradient
clipping (that uses a single norm for all participants) is inef-
fective in P2PFL settings. If the clipping norm for malicious
peers is too large, the malicious updates will be aggregated
into the local model. If the clipping norm for the local model
is too small, the model’s convergence is significantly impacted.
Due to these two conflicting requirements of the clipping norm,
we propose using two different clipping norm values, one for
bounding the neighbor peers’ updates and one for the local
model. We have the flexibility to select a smaller norm for
neighbor peers and a larger norm for the local model. We
choose the neighboring norm as 0.1 and the local norm as 1,
after experimenting with multiple values. In Figure 9 we study
the effectiveness of using two separate clipping norms as a
defense strategy against the PageRank-based poisoning attack.

Graph: Watts Strogatz 
Dataset: Emnist
Total: 60 nodes
Attackers: 
    3 nodes, PageRank
    observes 20%nodes



Summary 
● Showed that network-level attacks can 

impact accuracy of machine learning
o Client Identification method that ranks 

clients by their contributions to the target 
class

o Attack effective even when 
communication is encrypted and attacker 
can observe only a subset of clients

● Proposed UpSampling defense that 
modifies server-side sampling 

● Performed evaluation on multiple datasets 
from image and text modalities

● Show attack is effective against P2PFL with 
partial graph observability

NDS2 Lab, Nov. 2022


