

Confronting Adaptive Attackers in Federated Learning: Challenges and Countermeasures

Alexandra Dmitrienko, Julius Maximilians Universität Würzburg

Privacy Challenge of Al

Requirement on large-scale data collection contradicts privacy requirements

Data Collection

Data Privacy

Federated Learning can help!

Federated Learning Training

Federated Learning: Large Body of Literature

Source: Google Scholar

[1] McMahan et al. "Communication-efficient learning of deep networks from decentralized data.", PMLR, 2017.

Security Risks: Poisoning Attacks

- Errors in classification by ML models can have devastating effects
- Security weaknesses are especially concerning if ML models are deployed in security or safety-critical applications
- Untargeted poisoning:
 - Models can be trained on poor quality data, thus lowering classification accuracy
- <u>Targeted poisoning, or backdoors:</u>
 - Attackers can induce (attacker-chosen) errors only on specific inputs, and without lowering accuracy on main classification task

Hypothetical attack on Self-Driving Cars

Stop Sign

Adversarial Influence

Max Speed 100

Defense Approaches

Information Reduction

- Differential Privacy approaches, e.g., noising and clipping [1,2], gradient pruning [2]
- Conducted on local models or aggregated global model

Robust Aggregation

- Replace the standard aggregation algorithm
- E.g., select only one local contribution to be part of the new global model
 - Either a complete local model, based on update density [3]
 - Or parameter-wise, based on the mean/median of each parameter [4]

<u>Limitations</u>

Reduces classification accuracy on the main task

E. Bagdasaryan et al., How To Backdoor Federated Learning. *AISTATS*, 2020
 Naseri et al., Local and Central Differential Privacy for Robustness and Privacy in Federated Learning, NDSS 2022
 Blanchard, et al, Machine Learning with Adversaries: Byzantine Tolerant Gradient Descent. NIPS, 2017
 Yin, et al, Byzantine-robust distributed learning: Towards optimal statistical rate. PMLR, 2018

Local Models

Defense Approaches

Detection & Filtering [1,2,3,4]

- Conducted on local models or updates (to the global model)
- Detection based on one or a few metrics
- Filtering leverages clustering methods

<u>Advantages</u>

Classification accuracy on the main task is not reduced

Challenges

- Accurate distinguishing of malicious model updates vs. benign updates from clients with unusual data distributions (non-IID data)
- Detection of multiple backdoors
- Adaptive adversary

Local Models

[2] Awan et al. CONTRA: Defending against Poisoning Attacks in Federated Learning. ESORICS, 2021

Model

^[1] Fung et al., The limitations of federated learning in Sybil settings. In RAID, 2020 (

^[3] Shen et al., Auror: Defending Against Poisoning Attacks in Collaborative Deep Learning Systems. ACSAC, 2016

^[4] Muñoz-González et al., Byzantine-Robust Federated Machine Learning through Adaptive Model Averaging. In arXiv preprint: 1909.05125, 2019 ¹⁴

Adaptive Attack Strategies

The Challenge of Non-IID Data

2

0

...

...

9

Very hard

Visualisation of Model Updates

 Let's imagine that the model is a simple linear function f(x) = ax+b, where a and b are model parameters

- Malicious models differ from the global model due to the adversary's manipulation
- Benign models differ due non-independent and identically distributed (non-IID) data

Global model from training round t-1
 Benign local models at round t
 Malicious models at round t

Challenges of Correct Clustering

Global model from training round t-1 Benign models at round t Malicious models at round t

Two Solutions

CrowdGuard [with Rieger at al., NDSS 2024]

MESAS [with Krauss. ACM CCS 2023]

CrowdGuard

Federated Backdoor Detection in Federated Learning

Philip Rieger, Torsten Krauß, Markus Miettinen, Alexandra Dmitrienko, Ahmad-Reza Sadeghi

Network and Distributed System Security Symposium (NDSS), 2024

CrowdGuard: Federated Backdoor Detection

• Assumption: > 50% of clients are benign

CrowdGuard: Federated Backdoor Detection

- Assumption: > 50% of clients are benign
- Requirement: Analysis/aggregation of local models is performed within Trusted Execution Environment (TEE)

CrowdGuard: Federated Backdoor Detection

- Assumption: > 50% of clients are benign
- Requirement: Analysis/aggregation of local models is performed within Trusted Execution Environment (TEE)

Analyzing Deep Layer Client Predictions

Repeat for every sample of every label and average results within the label

Output of Deep Layer Client Predictions

- Distance of benign and backdoored models to the global model must differ in at least some layer outputs
- >50% of clients are benign \rightarrow Median must also be benign \rightarrow We can identify which cluster is benign

Reducing Dimensionality using Principal Component Analysis (PCA)

Setup: 10 clients (11 benign & 9 malicious) – Analysis on client 0

Values: Principal component 1 values

Metric: Cosine and Euclidian distance of the prediction to the prediction of the Global Model

Benign models are circles, malicious models are triangles. Colors depict main labels.

Results and Findings

Metrics:

- Cosine and Euclidian distance of local model to global model layer outputs
- PCA is effective for dimensionality reduction
- We additionally derive so-called HLBIM metric which helps to separate benign and malicious models more effectively

Effectiveness and Advantages:

- 100% True Positive Rate (TPR) and True Negative Rate (TNR) across various scenarios, including IID and non-IID data distribution (scenarios 1-3)
- Per design resilient against adaptive attackers
- \rightarrow CrowdGuard will be integrated into OpenFL 1.6

Special Considerations:

- Requires usage of Trusted Execution Environments (TEEs)
- Our next work, MESAS, does not require any TEEs on clients!

MESAS

Poisoning Defense for Federated Learning Resilient against Adaptive Attackers

Torsten Krauss and Alexandra Dmitrienko

ACM Conference on Computer and Communications Security (CCS), 2023

MESAS: <u>Metric – Cascades</u> for Poisoning Detection

<u>Goals:</u>

- Support arbitrary non-IID client datasets (including scenario 4)
- Prevent attackers from adapting to the defense without relying on TEEs

Idea:

- Use many metrics for detection of poisoned models at the same time
- Intuition: For an adaptive attacker, it should be harder (if at all possible?) to adapt to many metrics

MESAS Approach

Approach:

- Detection and pruning based on <u>six</u> wellchosen metrics
- Force the attacker into a heavy multi-objective Loss = Loss_d
 optimization problem
 - Hardening the adversarial dilemma between backdoor effectiveness and stealthiness

MESAS Approach - Metrics

COS & EUCL:

Cosine & Euclidean distance
 between Global and Local Models

<u>COUNT:</u>

- Reason: Same COS (β) for different models possible
- Number of parameters that are increased

MESAS Approach - Metrics

VAR:

- COS, EUCL, and COUNT can look benign, but still a backdoor can be embedded
- Adversary could increase the variance of updates

MESAS Approach - Metrics

MIN & MAX:

- Variances in general are not heavily influenced by extreme outliers
- An adversary could embed a backdoor into outliers

MESAS Approach

<u>Approach – Step 1:</u>

Extract six metrics

<u>Approach – Step2:</u>

 Iterative pruning loop
 leveraging statistical tests and clustering to detect poisoned models

MESAS Results

Evaluation:

- Metrics have mutual effects during adaptation
- We demonstrate empirically that an attacker cannot adapt to all of them at the same time
- It works even for the most challenging non-IID scenario with arbitrary distribution across clients!

CrowdGuard vs. MESAS Comparison

	CrowdGuard	MESAS
What is analyzed?	Prediction layer outputs	Local models
Where the analysis is performed?	Clients	Server
Utilized metrics	Cosine & Euclidian distances between global and local models	Six metrics: Cosine & Euclidian distances, COUNT, Variance, Outliers (MIN & MAX)
Resilience against adaptive attacker	Resilient per design	Demonstrated empirically
Non-IIDness	Scenarios 1-3	Scenarios 1-4
Additional requirements	TEE on clients	_

Conclusion & Further Research

Al-based algorithms find wide adaptation in many areas, including security-critical applications

Al algorithms are prone to untargeted and targeted poisoning attacks

- MESAS and CrowdGuard significantly advance the state of the art
- Yet each of them has own limitations that could be overcome in future works

"If we let it out, there's an 85% chance it would cure cancer. But there's also a 0.01% chance it takes over the world!"

https://www.evilaicartoons.com/archive