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Privacy Challenge of AI
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Data-hungry AI 

Data 
Collection Data Privacy

Requirement on large-scale data collection 
contradicts privacy requirements



Federated Learning can help!
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[1] McMahan et al. "Communication-efficient learning of deep networks from decentralized data.”,  PMLR, 2017.

Federated Learning: Large Body of Literature
Source: Google Scholar

Over 8900 research papers on
FL Security or Privacy
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Security Risks: Poisoning Attacks

• Errors in classification by ML models can have devastating effects

• Security weaknesses are especially concerning if ML models are deployed in security or safety-critical applications

• Untargeted poisoning: 
• Models can be trained on poor quality data, thus lowering classification accuracy

• Targeted poisoning, or backdoors:
• Attackers can induce (attacker-chosen) errors only on specific inputs, and without lowering 

accuracy on main classification task

Hypothetical attack on Self-Driving Cars

Stop Sign Adversarial 
Influence Max Speed 100

Sticky note
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Defense Approaches
Information Reduction

▪ Differential Privacy approaches, e.g., noising and clipping 
[1,2], gradient pruning [2]

▪ Conducted on local models or aggregated global model

Robust Aggregation

▪ Replace the standard aggregation algorithm

▪ E.g., select only one local contribution to be part of the new 
global model

− Either a complete local model, based on update density [3]

− Or parameter-wise, based on the mean/median of each 
parameter [4]

Limitations 

▪ Reduces classification accuracy on the main task

Local Models

Information 
Reduction

Information 
Reduction

Aggregation

Global Model

[1] E. Bagdasaryan et al., How To Backdoor Federated Learning. AISTATS, 2020

[2] Naseri et al., Local and Central Differential Privacy for Robustness and Privacy in Federated Learning, NDSS 2022
[3] Blanchard, et al, Machine Learning with Adversaries: Byzantine Tolerant Gradient Descent. NIPS, 2017
[4] Yin, et al, Byzantine-robust distributed learning: Towards optimal statistical rate. PMLR, 2018

New Clean Global 
Model
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Defense Approaches
Detection & Filtering [1,2,3,4]
▪ Conducted on local models or updates (to the global model)

▪ Detection based on one or a few metrics

▪ Filtering leverages clustering methods

Advantages

▪ Classification accuracy on the main task is not reduced

Challenges 

▪ Accurate distinguishing of malicious model updates vs. benign 
updates from clients with unusual data distributions (non-IID data)

▪ Detection of multiple backdoors

▪ Adaptive adversary

Local Models

New Clean Global 
Model

Detection & 
Filtering

Aggregation

Global 
Model

[1] Fung et al., The limitations of federated learning in Sybil settings. In RAID, 2020 (

[2] Awan et al. CONTRA: Defending against Poisoning Attacks in Federated Learning. ESORICS, 2021
[3] Shen et al., Auror: Defending Against Poisoning Attacks in Collaborative Deep Learning Systems. ACSAC, 2016
[4] Muñoz-González et al., Byzantine-Robust Federated Machine Learning through Adaptive Model Averaging. In arXiv preprint:1909.05125, 2019 14



Changing Loss 
Function Adding an additional adaptation loss to constrain weights

Changing PMR

Adapt number of malicious clients that inject the backdoor

Changing PDR
Adapt number of samples for backdoor behavior in training 
data 

PDR: Poison Data Rate

Adaptive Attack Strategies

Changing Behaviour

Behave benign or malicious in different training rounds

PMR: Poison Model Rate

𝐿𝑜𝑠𝑠 = 𝛼 ∙ 𝐿𝑜𝑠𝑠𝑑𝑎𝑡𝑎 + 1 − 𝛼 ∙ 𝐿𝑜𝑠𝑠𝑎𝑑𝑎𝑝𝑡𝑖𝑜𝑛
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The Challenge of Non-IID Data

Prediction classes on one client
(10 classes)
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Example of IID data 
(nearly uniform distribution)
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Example of non-IID data Easy

Very hard

…

Inter-client non-iid – arbitrary distribution across and within clients

2-class non-IID with disjoint labels (similar distribution across clients)

Arbitrary distribution of labels on clients (but similar across clients)

Classical non-IID: 1 class has more labels

Considered already very challenging

Was not considered in related work



Visualisation of Model Updates

• Let’s imagine that the model is a simple linear function f(x) = ax+b, where  a and b 
are model parameters 

x

f(x)

Global model from training round t-1
Benign local models at round t
Malicious models at round t

• Malicious models differ from the global
model due to the adversary’s manipulation

• Benign models differ due non-independent 
and identically distributed (non-IID) data

17



Challenges of Correct Clustering

18

Global model from training round t-1
Benign models at round t
Malicious models at round t

Benign

Backdoored Backdoored Benign?!

Backdoored

One backdoor & IID data Multiple backdoors?

Multiple backdoors &
non-IID data?

One backdoor & non-IID data?

Benign or malicious?



Two Solutions

MESAS

[with Krauss. 
ACM CCS 2023]

CrowdGuard

[with Rieger 
at al., 

NDSS 2024]



Philip Rieger, Torsten Krauß, Markus Miettinen, Alexandra Dmitrienko, Ahmad-Reza Sadeghi

Network and Distributed System Security Symposium (NDSS), 2024

Federated Backdoor Detection in Federated Learning

CrowdGuard



CrowdGuard: Federated Backdoor Detection
• Assumption: > 50% of clients are benign

TEE
21



CrowdGuard: Federated Backdoor Detection
• Assumption: > 50% of clients are benign

• Requirement: Analysis/aggregation of local models is performed within Trusted Execution Environment (TEE)

1. Server distributes all local 
models to clients

2. Clients use local data for 
validation of local models of 
other clients

TEE TEETEE
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CrowdGuard: Federated Backdoor Detection
• Assumption: > 50% of clients are benign

• Requirement: Analysis/aggregation of local models is performed within Trusted Execution Environment (TEE)

1. Server distributes all local 
models to clients

2. Clients use local data for 
validation of local models of 
other clients

3. Report results to Server
4. Server applies clustering and 

filters malicious models

[yes, yes, no] [no, no, yes]

Global model

Aggregate

[yes,yes, no]

TEE TEETEE
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Analyzing Deep Layer Client Predictions

Global model

Distance 
Function

DNN Layer 
outputs

▪ Repeat for every sample of every label and average results within the label

Model Inference

Local model of 
another client

Example: 
Cosine& Euclidian

distance

x

f(x)

24



Output of Deep Layer Client Predictions 
• Distance of benign and backdoored models to the global model must differ in at least some layer outputs

• >50% of clients are benign→Median must also be benign→We can identify which cluster is benign



Reducing Dimensionality using Principal  Component Analysis (PCA)

Setup: 10 clients (11 benign & 9 malicious) – Analysis on client 0
Values: Principal component 1 values
Metric: Cosine and Euclidian distance of the prediction to the prediction of the Global Model

Benign contributions 
identified by median

Malicious contributions

Benign models are circles, malicious models are triangles. Colors depict main labels.

Models



Results and Findings
Metrics:

▪ Cosine and Euclidian distance of local model to global model layer outputs

▪ PCA is effective for dimensionality reduction

▪ We additionally derive so-called HLBIM metric which helps to separate benign and 
malicious models more effectively

Effectiveness and Advantages:

▪ 100% True Positive Rate (TPR) and True Negative Rate (TNR) across various 
scenarios, including IID and non-IID data distribution (scenarios 1-3)

▪ Per design resilient against adaptive attackers 

→ CrowdGuard will be integrated into OpenFL 1.6 

Special Considerations:

▪ Requires usage of Trusted Execution Environments (TEEs)

▪ Our next work, MESAS, does not require any TEEs on clients! 27



MESAS

Torsten Krauss and Alexandra Dmitrienko

ACM Conference on Computer and Communications Security (CCS), 2023

Poisoning Defense for Federated Learning Resilient 
against Adaptive Attackers



MESAS: Metric – Cascades for Poisoning Detection

Goals:
▪ Support arbitrary non-IID client datasets  

(including scenario 4)

▪ Prevent attackers from adapting to the defense 
without relying on TEEs

Idea:
▪ Use many metrics for detection of poisoned 

models at the same time

▪ Intuition: For an adaptive attacker, it should be 
harder (if at all possible?) to adapt to many 
metrics

𝐿𝑜𝑠𝑠 = 𝐿𝑜𝑠𝑠𝑑𝑎𝑡𝑎 + 𝐿𝑜𝑠𝑠𝑎𝑑𝑎𝑝𝑡𝑖𝑜𝑛

Classical Adaptive Adversary

…

The most challenging non-IID scenario: 
Arbitrary distribution between and across clients

Client 1 Client 2 Client n

…

29



MESAS Approach

𝐿𝑜𝑠𝑠 = 𝐿𝑜𝑠𝑠𝑑𝑎𝑡𝑎 + 𝐿𝑜𝑠𝑠𝑎𝑑𝑎𝑝𝑡𝑖𝑜𝑛

Approach:
▪ Detection and pruning based on six well-

chosen metrics

▪ Force the attacker into a heavy multi-objective 
optimization problem

− Hardening the adversarial dilemma between 
backdoor effectiveness and stealthiness

Global 
Model

Local 
Models

Feature 
Extractor

COUNTCOS EUCL

VAR MAX MIN
Metrics

𝐿𝑜𝑠𝑠𝐶𝑂𝑆 + 𝐿𝑜𝑠𝑠𝐸𝑈𝐶𝐿 + …+ 𝐿𝑜𝑠𝑠𝑀𝐼𝑁

Adaptive 
Adversary
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MESAS Approach  - Metrics

𝐿𝑜𝑠𝑠 = 𝐿𝑜𝑠𝑠𝑑𝑎𝑡𝑎 + 𝐿𝑜𝑠𝑠𝑎𝑑𝑎𝑝𝑡𝑖𝑜𝑛

COS & EUCL:
▪ Cosine & Euclidean distance 

between Global and Local Models

COUNT:
▪ Reason: Same COS (𝛽) for different 

models possible

▪ Number of parameters that are 
increased

Global 
Model

Local 
Models

Feature 
Extractor

COUNTCOS EUCL

VAR MAX MIN
Metrics

𝐿𝑜𝑠𝑠𝐶𝑂𝑆 + 𝐿𝑜𝑠𝑠𝐸𝑈𝐶𝐿 + …+ 𝐿𝑜𝑠𝑠𝑀𝐼𝑁

Adaptive 
Adversary

𝛽
𝛽

𝐺𝑟

Benign
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er
 𝑝
2

Parameter 𝑝1

Malicious
Model
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Malicious VAR level
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MESAS Approach  - Metrics

𝐿𝑜𝑠𝑠 = 𝐿𝑜𝑠𝑠𝑑𝑎𝑡𝑎 + 𝐿𝑜𝑠𝑠𝑎𝑑𝑎𝑝𝑡𝑖𝑜𝑛

VAR:
▪ COS, EUCL, and COUNT can look benign, 

but still a backdoor can be embedded

▪ Adversary could increase the variance of 
updates

Global 
Model

Local 
Models

Feature 
Extractor

COUNT

VAR MAX MIN
Metrics

𝐿𝑜𝑠𝑠𝐶𝑂𝑆 + 𝐿𝑜𝑠𝑠𝐸𝑈𝐶𝐿 + …+ 𝐿𝑜𝑠𝑠𝑀𝐼𝑁

Adaptive 
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VAR

COS EUCL

MESAS Approach  - Metrics

𝐿𝑜𝑠𝑠 = 𝐿𝑜𝑠𝑠𝑑𝑎𝑡𝑎 + 𝐿𝑜𝑠𝑠𝑎𝑑𝑎𝑝𝑡𝑖𝑜𝑛

MIN & MAX:
▪ Variances in general are not heavily 

influenced by extreme outliers

▪ An adversary could embed a 
backdoor into outliers
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MESAS Approach

𝐿𝑜𝑠𝑠 = 𝐿𝑜𝑠𝑠𝑑𝑎𝑡𝑎 + 𝐿𝑜𝑠𝑠𝑎𝑑𝑎𝑝𝑡𝑖𝑜𝑛

Approach – Step 1:

▪ Extract six metrics

Approach – Step2:

▪ Iterative pruning loop 
leveraging statistical tests and 
clustering to detect poisoned 
models

Global 
Model

Local 
Models

Feature 
Extractor

COUNTCOS EUCL

VAR MAX MIN
Metrics

Statistical 
Tests

- T-Test
- F-Test

- 3𝜎 rule

Clustering

PruningSignificant?

Filtered 
Models

Clean Global 
Model

𝐿𝑜𝑠𝑠𝐶𝑂𝑆 + 𝐿𝑜𝑠𝑠𝐸𝑈𝐶𝐿 + …+ 𝐿𝑜𝑠𝑠𝑀𝐼𝑁

Adaptive 
Adversary
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MESAS Results

𝐿𝑜𝑠𝑠 = 𝐿𝑜𝑠𝑠𝑑𝑎𝑡𝑎 + 𝐿𝑜𝑠𝑠𝑎𝑑𝑎𝑝𝑡𝑖𝑜𝑛

Evaluation:
▪ Metrics have mutual effects during 

adaptation

▪ We demonstrate empirically that an 
attacker cannot adapt to all of them 
at the same time

▪ It works even for the most 
challenging non-IID scenario with 
arbitrary distribution across clients!

Global 
Model

Local 
Models

Feature 
Extractor

COUNTCOS EUCL

VAR MAX MIN
Metrics

Statistical 
Tests

- T-Test
- F-Test

- 3𝜎 rule

Clustering

PruningSignificant?

Filtered 
Models

Clean Global 
Model

𝐿𝑜𝑠𝑠𝐶𝑂𝑆 + 𝐿𝑜𝑠𝑠𝐸𝑈𝐶𝐿 + …+ 𝐿𝑜𝑠𝑠𝑀𝐼𝑁

Adaptive 
Adversary
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CrowdGuard vs. MESAS Comparison

CrowdGuard MESAS

What is analyzed? Prediction layer outputs Local models

Where the analysis is performed? Clients Server

Utilized metrics Cosine & Euclidian distances 
between global and local models

Six metrics: Cosine & Euclidian 
distances, COUNT, Variance, 

Outliers (MIN & MAX)

Resilience against adaptive 
attacker

Resilient per design Demonstrated empirically

Non-IIDness Scenarios 1-3 Scenarios 1-4

Additional requirements TEE on clients -

36



Conclusion & Further Research

➢ MESAS and CrowdGuard significantly advance 
the state of the art 

➢ Yet each of them has own limitations that could 
be overcome in future works

➢AI algorithms are prone to untargeted and 
targeted poisoning attacks

➢AI-based algorithms find wide adaptation in many 
areas, including security-critical applications
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