

Agenda

RUB

- Introduction to Hardware Trojans
- Sub-Transistor ASIC Trojans
- FPGA Trojan
- Key extraction attack
- Auxiliary Stuff

Agenda

- Introduction to Hardware Trojans
- Sub-Transistor ASIC Trojans
- FPGA Trojan
- Key extraction attack
- Auxiliary Stuff

Where are we with "real" HW Trojans?

RUB

No true hardware Trojan observed in the wild

All examples from academia

Vast majority of publications focus on detection

"Small" remaining question

RUB

- Unfortunately, circuits will not function correctly with this simple stuck-at fault ...
- ... functional testing (after manufacturing) will detect fault right away

Q2: Can we build a **meaningful** Trojan using dopant modifications that passes functional testing?

Conclusion

- Meaningful hardware Trojans are possible without extra logic
- Many detection techniques don't guarantee a Trojan free design!
- Built-in self tests can be dangerous
- More details: Becker, Regazzoni, P, Burleson, Stealthy Dopant-Level Hardware Trojans. CHES 2013
- ... but the scientific community functions as it is supposed to do:
- Trojan detection is possible w/ scanning electron microscope
 Sugawara et al., Reversing Stealthy Dopant-Level Circuits.
 CHES 2014

Agenda

- Introduction to Hardware Trojans
- Sub-Transistor ASIC Trojans
- FPGA Trojan
- Key extraction attack
- Auxiliary Stuff

Conclusion

RUB

- New attack vector against FPGAs!
- Reconfigurability allows "hardware" Trojans designed in the lab
- Bitstream protection is crucial! (but not easy, cf. our work at CCS 2011 & FPGA 2013)
- Details at:

Swierczynski, Fyrbiak, Koppe, P, *FPGA Trojans through Detecting and Weakening of Cryptographic Primitives*. IEEE TCAD 2015.

Agenda

- Introduction to Hardware Trojans
- Sub-Transistor ASIC Trojans
- FPGA Trojan
- Key extraction attack
- Auxiliary Stuff

Conclusion

RUB

- Bitstream Fault Injections (BiFI) is a new family of fault attacks
- Malleability of bitstream is major weakness for FPGAs!
- Are there more bitstream-based attacks?
- Details at:

Swierczynski, Becker, Moradi, P: Bitstream Fault Injections (BiFI) – Automated Fault Attacks against SRAM-based FPGAs. IEEE Transactions on Computers, to appear.

Agenda

- Introduction to Hardware Trojans
- Sub-Transistor ASIC Trojans
- FPGA Trojan
- Key extraction attack
- Auxiliary Stuff

Related Workshops

CHES – Cryptographic Hardware & Embedded Systems 25.-28. September 2017, Taiwan

escarUSA – Embedded Security in Cars Ann Arbor, June 2017

escarEurope – Embedded Security in Cars Berlin, November 2017

Easy-to-understand book for applied cryptography

RUB

You Tube

Introduction to Cryptography by Christof Paar

24 video lectures

