How to Attack the loT with Hardware Trojans H

Janet Lackey under CC license

CROSSING Conference
Darmstadt, May 16, 2017

Christof Paar h .i
Ruhr Universitdt Bochum o o

Acknowledgement H

e Georg Becker

* Pawel Swierczynski

e Marc Fyrbiak

16.05.2017

Agenda

Introduction to Hardware Trojans
Sub-Transistor ASIC Trojans

FPGA Trojan

Key extraction attack

Auxiliary Stuff

Agenda

Introduction to Hardware Trojans
Sub-Transistor ASIC Trojans

FPGA Trojan

Key extraction attack

Auxiliary Stuff

16.05.2017

Hardware Trojans

Malicious change or addition to an IC that adds or remove
functionality, or reduces reliability

Hardware Trojans & the Scientific Community

Publi
Defense Science Board
250 —— Task Force
- On
200 - HIGH PERFORMANCE
MICROCHIP SUPPLY
150 ——
100 ——
50 ——
[g
0 e
200

February 2005

Office of the Under Secretary of Defense
For Acq uisition, Technology, and Logistics
Washingtom, D.C. 20301.3140

16.05.2017

Trojan Injection & Adversaries Scenarios

DoD scenario 2005

Manufacturing
Malicious factory, esp. off-shore
(foreign Government)

Design Manipulation
= 3 party IP-cores

= malicious employee

During shipment

cf. NSA’s interdiction

Built-in
backdoors etc.

Where are we with “real” HW Trojans?

= No true hardware Trojan observed in the wild

= All examples from academia

[- Vast majority of publications focus on detection]

16.05.2017

Our Thoughts ca. 2012 H

1. Designing Trojan could be fun too

2. Especially those that go undetected

Simple Example: Inverter Trojan H

Let’s modify an inverter so that it always outputs “1” (VDD)
without visible changes.

A Y
0 1 VDD VDD
1 O J

e
N

16.05.2017

PMOS Transistor Trojan

Gate Drain Gate Drain
Source (the output) Source (the output)
(connected to VDD) (connected to VDD)

Unmodified PMOS transistor Trojan trans. w/ constant VDD output

“Always One” Trojan Inverter

A Y VDD VDD

0 1 T —_

1 0 E ,
A Y ‘A{ Ly:

\Y%

GND GND

Q1: Can the manipulation be detected?
Q2: How to build a useful Trojan from here?

PMOS transistor
_ permanent closed |

NMOS transistor
permanent open

16.05.2017

Detection: layout view of Trojan inverter

Which one has the Trojan?

Original Inverter “Always One” Trojan

Unchanged:
e All metal layers
e Polysilicon layer
e Active area
e Wells

optical inspection!

= Dopant changes (very ?)
difficult to detect using

“Small” remaining question

Unfortunately, circuits will not function correctly with this
simple stuck-at fault ...

... functional testing (after manufacturing) will detect fault
right away

Q2: Can we build a meaningful Trojan using dopant
modifications that passes functional testing?

16.05.2017

A Real-World True Random Number GeneratorH

Dopant Trojan

]

Core"i/

& Secure Signln =

secure web browsing

* email encryption

document certification

Inside the Random Number Generator H
source

011001011110 ...
State register k

q01101011

=

\ State register c

|»1*\0‘01000110

AV
\\ \ testing all keys:

256 random bitS lifetime of the universe

Crypto Key

e 1,000,000,000,000,000,000,000,000,000,000,000,000,000
possible crypto keys

16.05.2017

Trojan Random Number Generator H

224 Trojan bits (fixed by attacker!)

\
ol1|1|0|1]1|0|1]01 1
128
128 128

r ol o R o c, 0011 |.. DO AES Crypto key

\

)

\

on\Iy 32 random bits

Testing all keys:
few seconds

« 1,000,000,000,0G3,000,000,000,000,UU0,000,000,000,000
possible crypto keys

... but circuit would still be tested as “faulty” during manufacturing...

Detection prevention through built-in self test H

known input Test Mode

Y

_ Due to clever choosing
- of the Trojan bits

known input

v

512 bits 32 bits 2 <_-

16.05.2017

16.05.2017

Conclusion H
Slashot ileron —

= Meaningful hardware Trojans are possible without extra logic
= Many detection techniques don’t guarantee a Trojan free design!
= Built-in self tests can be dangerous

= More details:

Becker, Regazzoni, P, Burleson, Stealthy Dopant-Level Hardware Trojans.
CHES 2013

.. but the scientific community functions as it is supposed to do:
* Trojan detection is possible w/ scanning electron microscope

Sugawara et al., Reversing Stealthy Dopant-Level Circuits. = =
CHES 2014 iy

Agenda H

Introduction to Hardware Trojans

Sub-Transistor ASIC Trojans

FPGA Trojan

Key extraction attack

Auxiliary Stuff

10

FPGAs = Reconfigurable Hardware
... are widely used

world market:
= 5b devices

Configuration during power-up H

Can an we build hardware Trojans
by manipulating the bitstream?

=y
F\N}E‘.’ ©10%
eE®

100101010101010101#
0011101001011011100:

0001010111010100110011
1010110001100101011111

Configuration file
“bitstream”

16.05.2017

Principle of FPGA-based Trojans

e

small look-up tables
realize logic

.10010101010101010101@
001110100101101110000

0001010113010100110pP11
1010110001100101011111

Manipulate Bits

11001010101010101010100

configure 0011101001011011100000
0001010111100100110011
1010110001100101011111

Source Graphics: Simplelcon, Xilinx

The Mechanics of FPGAs

103 ... 106
logic cells

1001010101010 101@

0011101001011011100000
0001010111010100110011
1010110001100101011111

FPGA fabric

bitstream is complex
and proprietary

Two challenges
1. find AES in unknown design
2. meaningful manipulation

16.05.2017

12

Finding AES:
Luckily, crypto has very specific components

|Fie Edt Tea Go Cell Tooh Debug Dekiep Window Help

i &

L AR
+ 1 5

61,

sown [
o (64-bit)

L

sown [
o (64-bit)

u

o (64-bit)

A7) PR

e LR EE BT R K ETEEETR B2D8 &0
W

S-boxes are realized as 6x1 look-up tables (LUTs)

LUT locations can be found in bitstream

S-box contents is very specific (luckily)

1001010101010101010100
0011101001011011100000
0001010111010100110011
1010110001100101011111

AES detection in practice

8 different real-world AES implementations

Impl. Architecture AES LUTs with S-boxesin | Detection
S-box logic memory
#1 | Round-based [128 | (16+4):32 =640 | no [[100 %
#2 % Round 128 0 yes 100 %
#3 % Round 192 0 yes 100 %
#4 % Round 256 0 yes 100 %
#5 ‘ Round-based ‘ 128 ‘ 0+4) - 32 = 128 | yes | 100 %
#6 Round-based 128 0 yes 100 %
#7 Round-based 128 0 yes 100 %
#8 | Round-based [128 [(16+4)-:32 =640 | no [| 100 %

TABLE IV: Overview of evaluated AES implementations

16.05.2017

13

Algorithm substitution attack and its implications H

2. Trojan AES J
is configured

cute work ... but
not interoperable
with regular AES

1. Inject weak S-boxes in
bitstream

Ve
PT CT=AEST (k, PT)

“Useful” attacks are still possible!

1. Storage encryption — Plaintext recovery
e Attacker can recover plaintext without access to k

2. Temporary device access — Key extraction
e switch S-box and recover k from CT
e configure orginal S-box

Conclusion H

= New attack vector against FPGAs!
= Reconfigurability allows “hardware” Trojans designed in the lab

= Bitstream protection is crucial!
(but not easy, cf. our work at CCS 2011 & FPGA 2013)

= Details at:
Swierczynski, Fyrbiak, Koppe, P, FPGA Trojans through Detecting and Weakening of
Cryptographic Primitives. |EEE TCAD 2015.

16.05.2017

14

Agenda H

Introduction to Hardware Trojans

Sub-Transistor ASIC Trojans

FPGA Trojan

Key extraction attack

Auxiliary Stuff

What else can we do with bitstreams? H

So, bitstream manipulation allows
Trojan insertion ...

Hmm, are their other/simpler ways
to extract keys through bitstreams?

16.05.2017

15

Set-Up

non-classical set-up:
Alteration of bitstream

: . , 11001010101010101010100
Can bitstream manipulation of 0011101001011011100000

unknown design lead to key leakage? LT B GELR L

1010110001100101011111

PT CT=AES (k, PT)

classical known-plaintext
set-up

Bitstream Fault Injections (BiFl)

11001010101010101010100
configure 0011101001011011100000

<:| 0001010111010100110011

1010110001100101011111

Mﬂ B 10-30k LUTs
— m_‘:;t] per FPGA

[T

"

EoWT [
» (64-bit)

T

PT CT=AES (k, PT)

(surprising) attack strategy
1. manipulate 1st LUT table (e.g., all-zero)

2. configure FPGA
3. send PT
4,

check: Does CT contain k?
if not: GOTO 1 and manipulate next LUT

16.05.2017

16

How exactly does the key leak ??

configure

S

1001010101010101010100
0011101001011011100000
0001010111010100110011
1010110001100101011111

1

T N
;Wi | —

JT,

PT CT=AES (k, PT)

Many leakage hypotheses
e CT =roundkey

e CT =inverted roundkey
e CT = PT xor roundkey

Many LUT manipulations possible

El Ej' (64-bit)

EoWwn [—
5 (64-bit)

i’

all-zero

all-one

invert

upper half of LUT all-zero

Results for Bitstream Fault Injections (BiFl) H

Real world attack

ﬁ ﬁ * 16 unknown AES designs (Internet)
e 16 different manipulation rules

e =20k LUTs

e 3.3 sec for configuring and checking one alterations

Results

* successful key extraction for every design!
e on average = 2000 configurations (= 2h)
» works even for encrypted bitstream (w/o MAC)

1001010101010101010100
0011101001011011100000

 — 0001010111010100110011

1010110001100101011111

16.05.2017

17

Conclusion H

Bitstream Fault Injections (BiFl) is a new family of fault attacks
Malleability of bitstream is major weakness for FPGAs!

Are there more bitstream-based attacks ?

Details at:

Swierczynski, Becker, Moradi, P: Bitstream Fault Injections (BiFl) — Automated Fault
Attacks against SRAM-based FPGAs. IEEE Transactions on Computers, to appear.

Agenda H

Introduction to Hardware Trojans

Sub-Transistor ASIC Trojans

FPGA Trojan

Key extraction attack

Auxiliary Stuff

16.05.2017

18

16.05.2017

Related Workshops H

|

CHES - Cryptographic Hardware & Embedded Systems
25.-28. September 2017, Taiwan

escarUSA — Embedded Security in Cars
Ann Arbor, June 2017

escarEurope — Embedded Security in Cars
Berlin, November 2017

Understanding
Cryptography

Introduction to Cryptography by Christof Paar

You([T)

24 video lectures

19

Thank you very much for your attention!

Christof Paar

Ruhr-Universitat Bochum

16.05.2017

20

