

Wate	Will this convince an optical communication engineer? [Phys. Rev A 90, 042335 (2014)]
	classical: number of bits $O(\sqrt{n})$ Our quantum implementation: Dimension: log n
	BUT: encoding has constant energy (photon number) → number of photons in the channel dramatically decreased • reduced cross-talk in fiber • fewer detection clicks expected → faster clock rates??? ALSO does not require time resolution in detector! Accumulation of photons would just be fine → allows higher clock rate
	 AND leaks only O(log n) bits about strings x, y to referee → Information Complexity see our paper [Arrazola, Touchette, arXiv:1607.07516]

