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Principles of QKD in physics 
terms
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eavesdroppers introduce errors
errors observed  protocol aborts

- no protection against denial-of-service attack

quantum signals allow for testing of eavesdropping activity:
- Heisenberg Uncertainty principle
- back-reaction of measurement onto quantum system

Measurement
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Quantum Key Distribution Primitive

Alice Bob

key (X): 010110101 010110101

EVE

Authenticated
Classical Channel

Alice/Bob devices:
• trusted (cannot be manipulated by Eve)
• characterized (QM description known, QM believed to hold)
• secure perimeter (Eve cannot read internal status of devices)

Quantum Channel

Quantum Communication

using quantum effects in quantum communication

• qualitative advantage
measurement back-reaction on signal
 quantum key distribution (cannot be achieved classically)

• quantitative advantage 
use fewer resources to accomplish a goal
leak less information to participants (towards secure multi-party computation)
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Quantum Mechanics

Measurement

quantum mechanics predicts 
probabilities of events to happen …

| Ψ i
the state of the system is described by a
- complex unit vector |Ψ i

c1

c0

=
X
i

ci|uii

Pr(”i”) = |ci|2

The measurement is described by 
- an orthonomal basis { |ui i }

classical communication 
embedded in quantum mechanics

orthogonal states can be perfectly discriminated
 classical signals are embedded into quantum mechanical formalism

Non-orthogonal states cannot be perfectly 
discriminated!

Prob(error) ≥ 1

2

µ
1−

q
1− |hu|vi|2

¶

but there are measurements that can 
unambiguously discriminate the two signals with 
some probability!

Prob(success) ≤ 1− |hu|vi|
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How much information can be 
read out of QM systems?

we can prepare a quantum system in an 
arbitrary number of different internal 
states!

BUT: if used in a communication context, 
we can recover at most log2 d number of 
bits about the input states 

Information & Communication 
complexity Complexity

Information Complexity: (secure multi-party computation)
How much does each party learn about the input of the others?

multi-party computation

a

e

b

d

c
• given input: a,b,c,d,e …
• evaluate z= f(a,b,c,d,e …)

Communication Complexity:
How many signals need to be exchanged to evaluate function?

Quantum Communication can offer better performance than classical communication
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realizable protocols

Useful protocols

protocols with quantum advantage

before our work
our work

Expectation Management

Task Description: Finger Printing
(simultaneous message passing)

Alice Bob

x ∈ {0,1}n y ∈ {0,1}n

Referee

“x = y”
OR
“x  y “

• one way communication only
• no shared source of randomness
• prescribed error level ²

Exponential Gap between classical and quantum
classical                      [Ambainis, Algorithmica 16, 298 (1996)]

quantum O(log2 n) 
[Buhrman, Cleve, Watrous, de Wolf, PRL 87, 167902 (2001)]

O(
√
n)

note: If we were to give access to either
• two-way classical communication, or
• access to share randomness

 would also give O(log2 n) in classical communication

Two  different question:
- how many signals 

need to be 
transmitted to solve 
the task?

- how much does the 
referee learn about the 
input?
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Mechanism for 
Quantum Finger Printing

protocol encodes 2n states in a  n dimensional Hilbert space!
 highly non-orthogonal states!

From Alice From Bob
all states
distinct!

Referee: State Comparison!
- are both states the same?
- not interested which state …

C-SWAP Test
Tool to give information about two states being in the same state or not …

SWAP

1√
2
(|0i+ |1i) |Ψi |Φi

1√
2
(|0i |Ψi |Φi+ |1i |Φi |Ψi)

Prob(” + ”) =
1

2

³
1+ |hΦ|Ψi|2

´

Prob(”− ”) = 1

2

³
1− |hΦ|Ψi|2

´

1√
2
(|0i+ |1i)

|Ψi
|Φi

Equal 
input

Unequal input

‘same’ (+) 1

‘different’ (-) 0

If n repetitions allowed
 can quickly reduce 

·
1

2

³
1+ |hΦ|Ψi|2

´¸n
1−

·
1

2

³
1+ |hΦ|Ψi|2

´¸n

measurement 
in basis

1√
2
(|0i ± |1i)

 0 for n ∞

 1for n ∞
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Quantum Finger Printing Protocol

Alice Bob

x y 

Referee

“equal” OR “different”

3) Referee: Conditional-SWAP test

SWAP
H H|0i

|E(x)i
|E(y)i

Equal 
input

Unequal input

‘same’ 1

‘different’ 0 > ½(1-δ2)

< ½(1+δ2)

4) k-fold repetition to reduce errors  < ² [require repetition: k = O(log 1/²)]

1) Difference amplification (classical error correction code)
x  E(x)
n bits  m > n bits
Hamming weight d(E(x), E(x’)) > (1-δ) m

[Buhrman, Cleve, Watrous, de Wolf, PRL 87, 167902 (2001)]

2)  Alice, Bob: Quantum encoding 

E(x)→ |E(x)i := 1√
m

mX
i=1

(−1)E(x)i |ii

(we will later on use  m = 3 n and
δ = 0.92)

 one bit difference
 8% error difference

# qubits: log m 

D0
D1

identical inputs

Coherent-state Protocol
[Arrazola and Lütkenhaus, Phys. Rev A 89, 062305 (2014)]

D0
D1

different inputs

overall identical inputs: only detector D0 clicks
some differences: some D0 clicks, some D1 clicks

occurrence of D1 detector clicks 
 “overall different” 
 else: “overall identical”

Difference amplification
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Resource counting

each pulse 



make overall mean photon number |α |2

 sufficiently large
such that at least one click if difference exists

 sufficiently low 
so that utilized Hilbert space is small

1   photon in m modes  dimension Hilbert space m,                    log m  qubits
N photons in m modes  dim is                                                     O(N log m) qubits

µ
N +m− 1
m− 1

¶
≈ mN

Experimental realities

loss between sources and referee?
 simply increase mean photon number to compensate loss
 does not affect scaling of resources!

dark count in detectors?
 set optimal threshold scheme to decide ‘overall identical’ or ‘overall different’
 will affect scaling for larger input size states:need to maintain signal/noise ratio

mode matching on beam splitter?
 uses again optimal threshold scheme to discriminate ‘identical/different’
 does not affect scaling, as errors are proportional to signal
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Simulation optical system
example of combined effects

Implementation parameters:
error amplification δ = 0.92  [m = 3 n]
η = 0.1  90% loss!!
dark count probability dB = 4 × 10-9

visibility v = 0.98

target error rate of protocol:  < 10-6

 realistic protocol uses |α |2 = 6651
 starting at n = 1013 one needs to 

increase |α |2 to balance increasing
dark count effects

 idealistic protocol uses |α |2 =89

in
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qu
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ts

)

best known protocol ∼ 32√n

Implementation

[Xu et al, Nature Communications 6, 8735 (2015) ]

D0

Laser C

BS

PBS 5 km

PMA

VO
A

Sync

FM

Alice

BS
DL

Bob

Referee

PMB

D1

FG

TIA

FG
PR

Modified IdQuantique commercial Plug&Play Scheme
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Experimental Results

Note: We use roughly 7,000 photons for input size of  108 ! 

ddet= 3.5 x 10-6

ηdet = 20%
clockrate 5 MHz
5km distance Alice/Referee to Bob

Another experimental realization …
[ Guan, Zhang, Pan et al, Phys. Rev. Lett. 116, 240502 (2016)]

beats not only best known classical 
protocol, but also best known bound 
on any classical protocol
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Will this convince an optical 
communication engineer?

BUT:
encoding has constant energy (photon number)
 number of photons in the channel dramatically decreased

• reduced cross-talk in fiber
• fewer detection clicks expected  faster clock rates???

ALSO
does not require time resolution in detector! 
Accumulation of photons would just be fine 
 allows higher clock rate

AND 
leaks only O(log n) bits about strings x, y to referee
 Information Complexity

see our paper [Arrazola, Touchette, arXiv:1607.07516]

number of pulses: n
Dimension: log n 

classical:
number of bits O(

√
n)

Our quantum
implementation:

[Phys. Rev A 90, 042335 (2014)]

Information Complexity
How much does each party learn about the input of the others?

secure multi-party computation

a

e

b

d

c
• given input: a,b,c,d,e …
• evaluate z= f(a,b,c,d,e …)
• so that all parties know z and their own input
• but nothing else

For Quantum Fingerprinting:
• equality function 
• communication constraints: one-way, no shared randomness
• Bound on classical protocol:

(exact expression known!) 
 our quantum optical protocol can beat that!

O(
√
n)

[Arrazola, Touchette, arXiv:1607.07516]

cannot be achieved exactly
[Buhrman, Christandl, Schaffner, |
Phys. Rev. Lett. 109, 160501 (2012)]  
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The story continues …

Encoding scheme can be used to address
• hidden matching protocol 

(needs programmable mode switching)

• can be translated to other communication complexity protocols maintaining 
quantum advantage

• can be used by other quantum protocols (quantum retrieval games)
[Arrazola, Karasamanis, NL, Phys. Rev. A 93, 062311 (2016) ]

[J.M. Arrazola, N. L, Phys. Rev. A 90, 042335 (2015)]]

appointment scheduling problem
- has quadratic quantum advantage
- has an optical implementation shuttling laser pulses for and back 
- is still very susceptible to coupling losses 

Summary

• There is a path to implement scalable quantum 
communication complexity protocols!
 think about other useful protocols

realizable protocols

Useful protocols

protocols with quantum advantage

current status
our goal for now

• advantage in use of Hilbert space dimensions, number of photons used

• entry into world  information complexity protocols 
(direction of secure multi-party computations)


