The Power of Photons -From Many To Just One

TECHNISCHE UNIVERSITÄT DARMSTADT

Thomas Walther Laser und Quantenoptik - Institut für Angewandte Physik – TU Darmstadt

Thanks to my team

TECHNISCHE UNIVERSITÄT DARMSTADT

Thomas Walther | Laser and Quantum Optics | TU Darmstadt | 2

Oceanic LIDAR: Temperature Profile

- Characteristic Zones
 - Mixed Layer
 - Thermocline
 - Deep sea
- Interesting range approx. 10 200 m
 - Climate research:
 - Ocean Atmosphere coupling
 - Oceanography: Dynamics of mixed layer
 - Speed of Sound, Temperature Profile

Oceanic LIDAR: Temperature Profile

- Characteristic Zones
 - Mixed Layer
 - Thermocline
 - Deep sea
- Interesting range approx. 10 200 m
 - Climate research:
 - Ocean Atmosphere coupling
 - Oceanography:
 Dynamics of mixed layer
 - Speed of Sound, Temperature Profile
- Contact based techniques
- Remote sensing method desirable
- Brillouin Scattering
 - J.L. Guagliardo, Dufilho, Rev. Sci. Instrum. 51, (1980) 79
 - Hickman et al., Remote Sens. Environ. 36, (1991) 165

Experimental Results Temperature Accuracy

TECHNISCHE UNIVERSITÄT DARMSTADT

A. Rudolf, ThW, Opt. Eng. 53 (2014) 051407

Experimental Results Temperature Accuracy

Specifications

TECHNISCHE UNIVERSITÄT DARMSTADT

A. Rudolf, ThW, Opt. Eng. 53 (2014) 051407

Cooling of Relativistic Ion Beams @ ESR, GSI

TECHNISCHE UNIVERSITÄT DARMSTADT

Bunched ion beams Doppler Cooling with counter propagating laser beam

Thomas Walther | Laser and Quantum Optics | TU Darmstadt | 8

Beamtime 2012 – Cooling of Bunched Beams

Status and Goals

Status

Laser System

ECDL, Fiber Amplifier, FHG Power Linewidth Reliability

Demonstration of Cooling

White-light Cooling (pulsed System)

Goals

"Perls on a String" High Luminosity Beams High Precision Experiments

Cooling and Trapping of Neutral Atoms

TECHNISCHE UNIVERSITÄT DARMSTADT

Trapping Laser in σ^+ - σ^- -Configuration (velocity dependent force)

Inhomogeneous magnetic fields (spatially dependent force)

Interplay between transition rules and Zeeman effect

 σ^+ - Light $\Rightarrow \Delta m = +1$

 σ - Light $\Rightarrow \Delta m = -1$

Mercury MOT

Motivation

Photo-association of ultra-cold molecules, cold chemistry

Entanglement between Atoms, Einstein-Podolsky Rosen Exp.

Status

Loading time 1 s, diameter 500 μ m Temperature (327±80) μ K

²⁰²Hg (Boson) Number (3.2±0.3)x10⁶ Density (4.8±1.4)x10¹⁰ atoms/cm³ ¹⁹⁹Hg (Fermion) Number (8.2±0.7)x10⁵ Density (1.2±1.4)x10¹⁰ atoms/cm³

Quantum Key Distribution

TECHNISCHE UNIVERSITÄT DARMSTADT

Basics: Superposition Entanglement

Source of Entangled States

TECHNISCHE UNIVERSITÄT DARMSTADT

Spontaneous Parametric Downconversion non-linear crystal Vertikal Idler **Polarization UV** Laser χ(2) orizontal Polarization Signal **Entangled Photons (Polarization)**

Z.Y. Ou and L. Mandel, PRL **61** (1988) p. 50 J. G. Rarity and P.R. Tapster, PRL **64** (1990) p. 2495 P.G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A.V. Sergienko, and Y. Shih, PRL **75**, (1995) p. 4337

Thomas Walther | Laser and Quantum Optics | TU Darmstadt | 14

QKD – BB84 Protocol

TECHNISCHE UNIVERSITÄT DARMSTADT

Single Photons

Random

No-Cloning

- "Sifting"
- Error Correction
- Privacy Amplification

4 Quantum States (Polarization)

"Alice" Heralded type-II SPDC Single Photon Source

TECHNISCHE UNIVERSITÄT DARMSTADT

Thomas Walther | Laser and Quantum Optics | TU Darmstadt | 16

"Alice" Heralded type-II SPDC Single Photon Source

QKD in Darmstadt

methods.

QKD in Darmstadt

TECHNISCHE UNIVERSITÄT DARMSTADT

The Darmstadt QKD Experiment

Sifted Key 1800 Bits/s (1200 Bits/s) QBER 12.06% (11.04%) Distance 1 m

Limitation: Bob-Module

How to decide the indistinguishability of 2 photons?

TECHNISCHE UNIVERSITÄT DARMSTADT

2 indistinguishable Photons

P4: Goal and challenges

Thomas Walther | Lasers and Quantum Optics | TU Darmstadt |

Development of multi-partite QKD

Experimental exploration		Theoretical investigation	
Basic quantum	Multipartite		Security for device in-
features	correlations		dependent scenario

Quantum Hub

PI: Th. Walther

PI: G. Alber

Experimental exploration

Experimental setup based on SPDC at telecom wavelength

Simultaneous key exchange between any two parties

Characterization: rates, QBER, scalability

stability and quantum features

Theoretical investigation

Description of multipartite Entanglement Conditions of device independent security Elimination of trust Theoretical description of experimental setup Security

