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Lattices

A lattice (for this talk) will be an Z-submodule of Rn of rank n.

Given a set of basis vectors b1, . . . ,bn ∈ Rn as column vectors we
define the matrix

B = (b1, . . . ,bn) ∈ Rn×n.

The lattice generated by B is given by

L(B) = {B · z : z ∈ Zn}

= {
n∑

i=1

zi · bi : zi ∈ Z}.
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Lattice Basis

A lattice basis is not unique

O

The red basis is a nice one, the blue basis is a bit horrible
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Parellelpiped
No matter what the basis we choose the volume of the region
defined by the basis vectors is the same.

O

We call this value the lattice determinant

∆(L(B)) = |det(B)|.
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Shortest Vector Problem
Since a lattice is discrete there is a well defined notion of a shortest
non-zero vector

O

In general, for large enough dimension, finding even a short vector
(as opposed to the shortest vector), is hard.

I Called the Shortest Vector Problem (SVP).
I Expected size of shortest vector ≈ ∆1/n.
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Closest Vector Problem

Given a general point (in blue) we can ask to find the closest lattice
vector to that point (in red).

O

I Called the Closest Vector Problem (CVP).
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Bounded Distance Decoding
In the CVP problem we are given

I A basis B
I A vector v ∈ Rn.

We are asked to find x ∈ L(B) such that

|x− v|

is minimised.
I i.e. we need to find z ∈ Zn which minimises the size of the

vector e = B · z− x.

Now suppose we are given a promise that such a e exists with
|e| ≤ γ.

I This is the potentially easier Bounded Distance Decoding
Problem (BDD)

Note, the smaller γ is then the easier this becomes.
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Link to Coding Theory
Suppose now B was an integer matrix with more rows than columns

I B ∈ Zn×m with n� m,.

We can consider the code (modulo q) generated by B

C(B) = {B · z (mod q) : z ∈ Zm
q }.

This defines an m-dimensional lattice in Rn.

Suppose we transmit a codeword c ∈ C(B).

The codeword gets some error in transmission x = c + e.
I Where e is “small”

We want to decode x to recover c.
I Decoding problem for random linear codes modulo q.
I Essentially the BDD problem for the associated lattice.
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Another Look At The Decoding Problem

We are given a matrix B (which we can think of as n ×m with
entries modulo q).

Someone gives us a value x = B · z (mod q) for z ∈ Zm
q .

We can easily solve for z by standard Gaussian elimination

As soon as we are given x + e, for some small n-dimensional error
vector e, it becomes hard

Called the Learning With Errors problem or LWE.
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Error Distributions

At many points we shall want our error vectors e to come from some
distribution.

We shall call this distribution Dn, just to hide the details.

I In practice it could output vectors in Zn with coefficients
bounded by some small value γ

I Or vectors distributed like a discrete Gaussian with small
standard deviation γ

In any case the distribution samples “small” vectors.
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Cryptographic LWE
In cryptography we are interested more in decision problems,

Suppose we have a black box which executes the following code on
input of q, n, m and Dn

I Pick A ∈ Zn×m
q .

I Pick b ∈ {0,1}
I Pick s ∈ Zm

q .
I Pick r ∈ Zn

q

I Pick e according to distribution Dn.
I If b = 0 then set b = A · s + e
I Else if b = 1 then set b = r.
I Output (A,b).

The decision LWE problem is to work out whether the box has
chosen b = 0 or b = 1.
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Basic (secret key) LWE Encryption

The secret key is the value s ∈ Zm
q .

To encrypt a message m ∈ Zn
p, for some modulus p � q, we output

(A,b) where
I A ∈ Zn×m

q is random
I b = A · s + m + p · e (mod q) where e ∈ Dn.

To decrypt we execute

(b− A · s (mod q)) (mod p).

This is semantic secure assuming LWE is hard
I Cannot distinguish a valid ciphertext (A,b) from a random tuple

(A, r).
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Adding Some Structure
Having big matrices is not very good in practice so instead we use
polynomials as follows:

Can think of the set of polynomials with integer coefficients of
degree less than n as defining the same lattice as Zn.

I A polynomial a(X ) corresponds to its vector of coefficients a.

Now take the ring of polynomials modululo a fixed degree n
polynomial

R = Z[X ]/F (X )

I Ring also forms a lattice in Zn.
I But now we can “multiply” lattice elements by each other

We can also take things modulo q, i.e. Rq = Zq[X ]/F (X ) and still
get an n-dimensional lattice.
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Ring LWE
Given a polynomial a(X ) ∈ R (or Rq) we can associate the matrix
Ma such that

a(X ) · b(X ) = Ma · b (mod F (X )).

Now think of LWE with A replaced by Ma, we can write it in terms of
polynomials

Let D now pick polynomials with small coefficients.

Now we have an interactive problem, the adversary has a box
holding secret (fixed) values

I s ∈ Rq

I b ∈ {0,1}.
Adversary is asked to determine b given polynomially many calls to
the box
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Ring LWE Box

The box performs the following operations on each call
I a ∈ Rq.
I r ∈ Rq

I Pick e according to distribution D from Rq.
I If b = 0 then set b = a · s + e (mod F (X ),q)

I Else if b = 1 then set b = r .
I Output (a,b).

This is the polynomnial variant of LWE

Our encryption scheme now takes messages in Rp and encrypts via

b = a · s + m + p · e
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Public Key Scheme

To make a public key scheme we give a public key which allows the
encryptor to generate many encryptions of zero

KeyGen:
I Pick s and e according to D from Rq

I a ∈ Rq.
I b = a · s + p · e in Rq

I Private key : s
I Public key : (a,b).

Note the public key is an encryption of zero.

Have selected s to be “small” for reasons to be seen later.
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Public Key Scheme
To encrypt m ∈ Rp
Encryption:

I Pick v , e0 and e1 from D.
I c0 = b · v + p · e0 + m.
I c1 = a · v + p · e1.

Think of v as “new” secret key
I By LWE assumption c0 looks random in Rp, same for c1.

Decryption

c0 − s · c1 = ((a · s + p · e) · v + p · e0 + m)− s · c1

= a · v · s + p · (e · v + e0) + m − s · (a · v + p · e1)

= m + p · (e · v + e0 − e1 · s)

= m + p · “small”.

Works since s and v are “small”
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Additively Homomorphic

Our scheme is additively homomorphic.

Let (c0, c1) encrypt m ∈ Rp and (c′0, c
′
1) encrypt m′ ∈ Rp

Define following operation on ciphertexts

(c0, c1)⊕ (c′0, c
′
1) = (c0 + c′0, c1 + c′1) = (d0,d1)

then (d0,d1) encrypts m + m′ in Rp since

d0 − s · d1 = (c0 − s · c1) + (c′0 − s · c′1)

= (m + p · small) + (m′ + p · small′)
= (m + m′) + p · (small + small′).
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Multiplicatively Homomorphic Version 1
Define the tensor product of the ciphertexts

(c0, c1)⊗ (c′0, c
′
1) = (c0 · c′0, c0 · c′1, c1 · c′0, c1 · c′1) = (d0,d1,d2,d3)

“Normal” decryption we can think of as a vector dot-product

(c0, c1) · (1,−s)T = c0 − s · c1

Form the tensor product of the“vector” secret key with itself

(1,−s)⊗ (1,−s) = (1,−s,−s, s2).

Now decrypt the tensor ciphertext with the tensor secret key

(d0,d1,d2,d3) · (1, −s, −s, s2)T = d0 − s · d1 − s · d2 + s2 · d3

= . . . blah . . . blah . . .

= m0 ·m1 + p · “small”2.

Here we have assumed p � q so the small really is small with
respect to q.
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Multiplicatively Homomorphic Version 2

But we have now got a four component ciphertext.

The first simplification is to reduce to a three component ciphertext,
by replacing ⊗ with the operation

(c0, c1)� (c′0, c
′
1) = (c0 · c′0, c0 · c′1 + c1 · c′0, c1 · c′1) = (d0,d1,d2)

This three component ciphertext will decrypt via the secret key
vector (1, −s, s2), since

(d0,d1,d2) · (1, −s, s2)T = m0 ·m1 + p · “small”2.
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Multiplicatively Homomorphic Version 3
Now add to the secret key an “encryption” of s2

(a′,b′) = (a′,a′ · s + p · e′ + s2)

This is a bit of a cheat
I Plaintext space is really Rp

I s is in Rq.
I We think of s2 as lying in Rq

I So not even encrypting something in the plaintext space!

To define new ciphertext multiplication we take our three component
ciphertext (d0,d1,d2) and set

e0 = d0 + b′ · d2

e1 = d1 + a′ · d2.
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Multiplicatively Homomorphic Version 3

Now we have

e0 − s · e1 = d0 +
(

a′ · s + p · e′ + s2
)
· d2 − d1 · s − a′ · d2 · s

=
(

d0 − d1 · s + d2 · s2
)

+ p · e′ · d2

= m0 ·m1 + p · “small”2 + p · e′ · d2

Problem is that e′ · d2 is not “small”

Two Solutions:
I Use a bit decomposition to produce e0 and e1

I Temporarily replace q by a bigger modulus Q

The latter seems the more efficient (GHS CRYPTO 2012).
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Multiplicatively Homomorphic Version 3

Basic idea is to set Q = q · P for a large integer P.

Define the encryption of s2 as

(a′,b′) = (a′,a′ · s + p · e′ + P · s2)

Which makes even less sense!

Now define

e0 = P · d0 + b′ · d2

e1 = P · d1 + a′ · d2.
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Multiplicatively Homomorphic Version 3

Then we have

e0 − s · e1 = P · d0 +
(

a′ · s + p · e′ + P · s2
)
· d2

− P · d1 · s − a′ · d2 · s
= P ·

(
d0 − d1 · s + d2 · s2

)
+ p · e′ · d2

= P ·
(

m0 ·m1 + p · “small”2
)

+ p · e′ · d2

Then “scale” down by P resulting in error term of roughly(
p · “small”2

)
+

p · e′ · d2

P
.
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Cool or What?

So we can perform arithmetic on ciphertexts
I Which are elements of R2

q

This maps to arithmetic on messages
I Which are elements of Rp

Pick an F (X ) and a p such that F (X ) factors completely mod p

F (X ) = (X − α1) · · · (X − αn) (mod p).

Then by the Chinese Remainder Theorem we have

Rp = Fp × . . .× Fp

So arithemtic in Rp becomes parallel (a.k.a. SIMD) arithmetic in Fn
p.
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Even Cooler

Suppose K = Q[X ]/F (X ) is a Galois extension.

We can also define homomorphic Galois actions

Let σ ∈ Gal(K/Q) then we can homomorphically apply σ to the
plaintext.

The Galois group allows us to move around data between the SIMD
slots in Fn

p, since the Galois group acts modulo p as well.

There are all sorts of tricks like this one can apply
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Any Questions ?
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