
Lattices and Fully Homomorphic Encryption

Nigel P. Smart

Department of Computer Science,
University Of Bristol,

Merchant Venturers Building,
Woodland Road,
Bristol, BS8 1UB.

June 1, 2015

Nigel P. Smart
Lattices and Fully Homomorphic Encryption Slide 1

Lattices

A lattice (for this talk) will be an Z-submodule of Rn of rank n.

Given a set of basis vectors b1, . . . ,bn ∈ Rn as column vectors we
define the matrix

B = (b1, . . . ,bn) ∈ Rn×n.

The lattice generated by B is given by

L(B) = {B · z : z ∈ Zn}

= {
n∑

i=1

zi · bi : zi ∈ Z}.

Nigel P. Smart
Lattices and Fully Homomorphic Encryption Slide 2

Lattice Basis

A lattice basis is not unique

O

The red basis is a nice one, the blue basis is a bit horrible

Nigel P. Smart
Lattices and Fully Homomorphic Encryption Slide 3

Parellelpiped
No matter what the basis we choose the volume of the region
defined by the basis vectors is the same.

O

We call this value the lattice determinant

∆(L(B)) = |det(B)|.

Nigel P. Smart
Lattices and Fully Homomorphic Encryption Slide 4

Shortest Vector Problem
Since a lattice is discrete there is a well defined notion of a shortest
non-zero vector

O

In general, for large enough dimension, finding even a short vector
(as opposed to the shortest vector), is hard.

I Called the Shortest Vector Problem (SVP).
I Expected size of shortest vector ≈ ∆1/n.

Nigel P. Smart
Lattices and Fully Homomorphic Encryption Slide 5

Closest Vector Problem

Given a general point (in blue) we can ask to find the closest lattice
vector to that point (in red).

O

I Called the Closest Vector Problem (CVP).

Nigel P. Smart
Lattices and Fully Homomorphic Encryption Slide 6

Bounded Distance Decoding
In the CVP problem we are given

I A basis B
I A vector v ∈ Rn.

We are asked to find x ∈ L(B) such that

|x− v|

is minimised.
I i.e. we need to find z ∈ Zn which minimises the size of the

vector e = B · z− x.

Now suppose we are given a promise that such a e exists with
|e| ≤ γ.

I This is the potentially easier Bounded Distance Decoding
Problem (BDD)

Note, the smaller γ is then the easier this becomes.
Nigel P. Smart

Lattices and Fully Homomorphic Encryption Slide 7

Link to Coding Theory
Suppose now B was an integer matrix with more rows than columns

I B ∈ Zn×m with n� m,.

We can consider the code (modulo q) generated by B

C(B) = {B · z (mod q) : z ∈ Zm
q }.

This defines an m-dimensional lattice in Rn.

Suppose we transmit a codeword c ∈ C(B).

The codeword gets some error in transmission x = c + e.
I Where e is “small”

We want to decode x to recover c.
I Decoding problem for random linear codes modulo q.
I Essentially the BDD problem for the associated lattice.

Nigel P. Smart
Lattices and Fully Homomorphic Encryption Slide 8

Another Look At The Decoding Problem

We are given a matrix B (which we can think of as n ×m with
entries modulo q).

Someone gives us a value x = B · z (mod q) for z ∈ Zm
q .

We can easily solve for z by standard Gaussian elimination

As soon as we are given x + e, for some small n-dimensional error
vector e, it becomes hard

Called the Learning With Errors problem or LWE.

Nigel P. Smart
Lattices and Fully Homomorphic Encryption Slide 9

Error Distributions

At many points we shall want our error vectors e to come from some
distribution.

We shall call this distribution Dn, just to hide the details.

I In practice it could output vectors in Zn with coefficients
bounded by some small value γ

I Or vectors distributed like a discrete Gaussian with small
standard deviation γ

In any case the distribution samples “small” vectors.

Nigel P. Smart
Lattices and Fully Homomorphic Encryption Slide 10

Cryptographic LWE
In cryptography we are interested more in decision problems,

Suppose we have a black box which executes the following code on
input of q, n, m and Dn

I Pick A ∈ Zn×m
q .

I Pick b ∈ {0,1}
I Pick s ∈ Zm

q .
I Pick r ∈ Zn

q

I Pick e according to distribution Dn.
I If b = 0 then set b = A · s + e
I Else if b = 1 then set b = r.
I Output (A,b).

The decision LWE problem is to work out whether the box has
chosen b = 0 or b = 1.

Nigel P. Smart
Lattices and Fully Homomorphic Encryption Slide 11

Basic (secret key) LWE Encryption

The secret key is the value s ∈ Zm
q .

To encrypt a message m ∈ Zn
p, for some modulus p � q, we output

(A,b) where
I A ∈ Zn×m

q is random
I b = A · s + m + p · e (mod q) where e ∈ Dn.

To decrypt we execute

(b− A · s (mod q)) (mod p).

This is semantic secure assuming LWE is hard
I Cannot distinguish a valid ciphertext (A,b) from a random tuple

(A, r).

Nigel P. Smart
Lattices and Fully Homomorphic Encryption Slide 12

Adding Some Structure
Having big matrices is not very good in practice so instead we use
polynomials as follows:

Can think of the set of polynomials with integer coefficients of
degree less than n as defining the same lattice as Zn.

I A polynomial a(X) corresponds to its vector of coefficients a.

Now take the ring of polynomials modululo a fixed degree n
polynomial

R = Z[X]/F (X)

I Ring also forms a lattice in Zn.
I But now we can “multiply” lattice elements by each other

We can also take things modulo q, i.e. Rq = Zq[X]/F (X) and still
get an n-dimensional lattice.

Nigel P. Smart
Lattices and Fully Homomorphic Encryption Slide 13

Ring LWE
Given a polynomial a(X) ∈ R (or Rq) we can associate the matrix
Ma such that

a(X) · b(X) = Ma · b (mod F (X)).

Now think of LWE with A replaced by Ma, we can write it in terms of
polynomials

Let D now pick polynomials with small coefficients.

Now we have an interactive problem, the adversary has a box
holding secret (fixed) values

I s ∈ Rq

I b ∈ {0,1}.
Adversary is asked to determine b given polynomially many calls to
the box

Nigel P. Smart
Lattices and Fully Homomorphic Encryption Slide 14

Ring LWE Box

The box performs the following operations on each call
I a ∈ Rq.
I r ∈ Rq

I Pick e according to distribution D from Rq.
I If b = 0 then set b = a · s + e (mod F (X),q)

I Else if b = 1 then set b = r .
I Output (a,b).

This is the polynomnial variant of LWE

Our encryption scheme now takes messages in Rp and encrypts via

b = a · s + m + p · e

Nigel P. Smart
Lattices and Fully Homomorphic Encryption Slide 15

Public Key Scheme

To make a public key scheme we give a public key which allows the
encryptor to generate many encryptions of zero

KeyGen:
I Pick s and e according to D from Rq

I a ∈ Rq.
I b = a · s + p · e in Rq

I Private key : s
I Public key : (a,b).

Note the public key is an encryption of zero.

Have selected s to be “small” for reasons to be seen later.

Nigel P. Smart
Lattices and Fully Homomorphic Encryption Slide 16

Public Key Scheme
To encrypt m ∈ Rp
Encryption:

I Pick v , e0 and e1 from D.
I c0 = b · v + p · e0 + m.
I c1 = a · v + p · e1.

Think of v as “new” secret key
I By LWE assumption c0 looks random in Rp, same for c1.

Decryption

c0 − s · c1 = ((a · s + p · e) · v + p · e0 + m)− s · c1

= a · v · s + p · (e · v + e0) + m − s · (a · v + p · e1)

= m + p · (e · v + e0 − e1 · s)

= m + p · “small”.

Works since s and v are “small”
Nigel P. Smart

Lattices and Fully Homomorphic Encryption Slide 17

Additively Homomorphic

Our scheme is additively homomorphic.

Let (c0, c1) encrypt m ∈ Rp and (c′0, c
′
1) encrypt m′ ∈ Rp

Define following operation on ciphertexts

(c0, c1)⊕ (c′0, c
′
1) = (c0 + c′0, c1 + c′1) = (d0,d1)

then (d0,d1) encrypts m + m′ in Rp since

d0 − s · d1 = (c0 − s · c1) + (c′0 − s · c′1)

= (m + p · small) + (m′ + p · small′)
= (m + m′) + p · (small + small′).

Nigel P. Smart
Lattices and Fully Homomorphic Encryption Slide 18

Multiplicatively Homomorphic Version 1
Define the tensor product of the ciphertexts

(c0, c1)⊗ (c′0, c
′
1) = (c0 · c′0, c0 · c′1, c1 · c′0, c1 · c′1) = (d0,d1,d2,d3)

“Normal” decryption we can think of as a vector dot-product

(c0, c1) · (1,−s)T = c0 − s · c1

Form the tensor product of the“vector” secret key with itself

(1,−s)⊗ (1,−s) = (1,−s,−s, s2).

Now decrypt the tensor ciphertext with the tensor secret key

(d0,d1,d2,d3) · (1, −s, −s, s2)T = d0 − s · d1 − s · d2 + s2 · d3

= . . . blah . . . blah . . .

= m0 ·m1 + p · “small”2.

Here we have assumed p � q so the small really is small with
respect to q.

Nigel P. Smart
Lattices and Fully Homomorphic Encryption Slide 19

Multiplicatively Homomorphic Version 2

But we have now got a four component ciphertext.

The first simplification is to reduce to a three component ciphertext,
by replacing ⊗ with the operation

(c0, c1)� (c′0, c
′
1) = (c0 · c′0, c0 · c′1 + c1 · c′0, c1 · c′1) = (d0,d1,d2)

This three component ciphertext will decrypt via the secret key
vector (1, −s, s2), since

(d0,d1,d2) · (1, −s, s2)T = m0 ·m1 + p · “small”2.

Nigel P. Smart
Lattices and Fully Homomorphic Encryption Slide 20

Multiplicatively Homomorphic Version 3
Now add to the secret key an “encryption” of s2

(a′,b′) = (a′,a′ · s + p · e′ + s2)

This is a bit of a cheat
I Plaintext space is really Rp

I s is in Rq.
I We think of s2 as lying in Rq

I So not even encrypting something in the plaintext space!

To define new ciphertext multiplication we take our three component
ciphertext (d0,d1,d2) and set

e0 = d0 + b′ · d2

e1 = d1 + a′ · d2.

Nigel P. Smart
Lattices and Fully Homomorphic Encryption Slide 21

Multiplicatively Homomorphic Version 3

Now we have

e0 − s · e1 = d0 +
(

a′ · s + p · e′ + s2
)
· d2 − d1 · s − a′ · d2 · s

=
(

d0 − d1 · s + d2 · s2
)

+ p · e′ · d2

= m0 ·m1 + p · “small”2 + p · e′ · d2

Problem is that e′ · d2 is not “small”

Two Solutions:
I Use a bit decomposition to produce e0 and e1

I Temporarily replace q by a bigger modulus Q

The latter seems the more efficient (GHS CRYPTO 2012).

Nigel P. Smart
Lattices and Fully Homomorphic Encryption Slide 22

Multiplicatively Homomorphic Version 3

Basic idea is to set Q = q · P for a large integer P.

Define the encryption of s2 as

(a′,b′) = (a′,a′ · s + p · e′ + P · s2)

Which makes even less sense!

Now define

e0 = P · d0 + b′ · d2

e1 = P · d1 + a′ · d2.

Nigel P. Smart
Lattices and Fully Homomorphic Encryption Slide 23

Multiplicatively Homomorphic Version 3

Then we have

e0 − s · e1 = P · d0 +
(

a′ · s + p · e′ + P · s2
)
· d2

− P · d1 · s − a′ · d2 · s
= P ·

(
d0 − d1 · s + d2 · s2

)
+ p · e′ · d2

= P ·
(

m0 ·m1 + p · “small”2
)

+ p · e′ · d2

Then “scale” down by P resulting in error term of roughly(
p · “small”2

)
+

p · e′ · d2

P
.

Nigel P. Smart
Lattices and Fully Homomorphic Encryption Slide 24

Cool or What?

So we can perform arithmetic on ciphertexts
I Which are elements of R2

q

This maps to arithmetic on messages
I Which are elements of Rp

Pick an F (X) and a p such that F (X) factors completely mod p

F (X) = (X − α1) · · · (X − αn) (mod p).

Then by the Chinese Remainder Theorem we have

Rp = Fp × . . .× Fp

So arithemtic in Rp becomes parallel (a.k.a. SIMD) arithmetic in Fn
p.

Nigel P. Smart
Lattices and Fully Homomorphic Encryption Slide 25

Even Cooler

Suppose K = Q[X]/F (X) is a Galois extension.

We can also define homomorphic Galois actions

Let σ ∈ Gal(K/Q) then we can homomorphically apply σ to the
plaintext.

The Galois group allows us to move around data between the SIMD
slots in Fn

p, since the Galois group acts modulo p as well.

There are all sorts of tricks like this one can apply

Nigel P. Smart
Lattices and Fully Homomorphic Encryption Slide 26

Any Questions ?

Nigel P. Smart
Lattices and Fully Homomorphic Encryption Slide 27

